分层分类旨在将对象对类别的层次进行。例如,可以根据订单,家庭和物种的三级层次分类来分类鸟类。现有方法通过将其解耦为几个多级分类任务来常见地解决分层分类。但是,这种多任务学习策略未能充分利用不同层次结构的各种类别之间的相关性。在本文中,我们提出了基于深度学习的统一概率框架的标签层次转换,以解决层次分类。具体地,我们明确地学习标签层次转换矩阵,其列向量表示两个相邻层次结构之间的类的条件标签分布,并且可以能够编码嵌入类层次结构中的相关性。我们进一步提出了混淆损失,这鼓励分类网络在训练期间学习不同标签层次结构的相关性。所提出的框架可以适用于任何现有的深网络,只有轻微的修改。我们尝试具有各种层次结构的三个公共基准数据集,结果证明了我们的方法超出现有技术的优势。源代码将公开可用。
translated by 谷歌翻译
分层多粒度分类(HMC)将分层多粒度标签分配给每个对象,专注于对标签层次结构进行编码,例如[“Albatross”,“Laysan Albatross”]从粗略级别进行。然而,细粒度的定义是主观的,并且图像质量可能会影响识别。因此,可以在层次结构的任何水平处观察样本,例如,例如,[“信天翁”]或[“白金贸易”,“Laysan Albatross”,并且在致动类别中辨别的示例在HMC的传统设置中通常被忽略。在本文中,我们研究了HMC问题,其中对象在层次结构的任何级别上标记。所提出的方法的基本设计源自两个动机:(1)学习在各个级别标记的物体应该转移级别之间的分层知识; (2)较低级别的类应继承与上级超类相关的属性。所提出的组合损失通过从树层次结构中定义的相关标签聚合信息来最大化观察到的地面真实标签的边际概率。如果观察到的标签处于叶片水平,则组合损失进一步施加了多级跨熵损失,以增加细粒度分类损失的重量。考虑到分层特征交互,我们提出了一个分层剩余网络(HRN),其中来自父级的粒度特定特征作为残留连接的特定特征被添加到儿童级别的特征。与最先进的HMC方法和精细的视觉分类(FGVC)方法相比,三种常用数据集的实验证明了我们的方法的有效性和利用标签层次结构的方法。
translated by 谷歌翻译
标签层次结构通常作为生物分类法或语言数据集的一部分可用。几项作品利用这些作品来学习层次结构意识到功能,以改善分类器,以在维持或减少总体错误的同时犯有语义有意义的错误。在本文中,我们提出了一种学习层次结构意识特征(HAF)的新方法,该方法利用分类器在每个层次结构级别上的分类器受到约束,以生成与标签层次结构一致的预测。分类器的训练是通过最大程度地减少从细粒分类器获​​得的目标软标签的Jensen Shannon差异来训练。此外,我们采用了简单的几何损失,该损失限制了特征空间几何形状以捕获标签空间的语义结构。 HAF是一种训练时间方法,可以改善错误,同时保持TOP-1错误,从而解决了跨凝性损失的问题,该问题将所有错误视为平等。我们在三个层次数据集上评估HAF,并在Inaturalist-19和Cifar-100数据集上实现最新结果。源代码可从https://github.com/07agarg/haf获得
translated by 谷歌翻译
可以通过对手动预定义目标的监督(例如,一hot或Hadamard代码)进行深入的表示学习来解决细粒度的视觉分类。这种目标编码方案对于模型间相关性的灵活性较小,并且对稀疏和不平衡的数据分布也很敏感。鉴于此,本文介绍了一种新颖的目标编码方案 - 动态目标关系图(DTRG),作为辅助特征正则化,是一个自生成的结构输出,可根据输入图像映射。具体而言,类级特征中心的在线计算旨在在表示空间中生成跨类别距离,因此可以通过非参数方式通过动态图来描绘。明确最大程度地减少锚定在这些级别中心的阶层内特征变化可以鼓励学习判别特征。此外,由于利用了类间的依赖性,提出的目标图可以减轻代表学习中的数据稀疏性和不稳定。受混合风格数据增强的最新成功的启发,本文将随机性引入了动态目标关系图的软结构,以进一步探索目标类别的关系多样性。实验结果可以证明我们方法对多个视觉分类任务的许多不同基准的有效性,尤其是在流行的细粒对象基准上实现最先进的性能以及针对稀疏和不平衡数据的出色鲁棒性。源代码可在https://github.com/akonlau/dtrg上公开提供。
translated by 谷歌翻译
当然,细粒度的识别,例如车辆识别或鸟类分类,具有特定的分层标签,其中精细类别总是难以分类而不是粗作品。然而,最近的大多数基于深度学习的方法都忽略了细粒物体的语义结构,并且不利用传统的细粒度识别技术(例如,粗致细的分类)。在本文中,我们提出了一种具有双分支网络(粗分支和细枝)的新颖框架,即语义双线性汇集,用于使用分级标签树进行细粒度识别。该框架可以自适应地从层级中学习语义信息。具体而言,我们设计了通过考虑相邻水平与不同粗级别的样本之间的距离来完全利用语义前导者来充分利用语义前导者的训练的广义交叉熵损失。此外,我们的方法在测试时仅利用细分分支,以便在测试时间内增加开销。实验结果表明,我们的提出方法在四个公共数据集上实现了最先进的性能。
translated by 谷歌翻译
深度学习模型在逐步学习新任务时遭受灾难性遗忘。已经提出了增量学习,以保留旧课程的知识,同时学习识别新课程。一种典型的方法是使用一些示例来避免忘记旧知识。在这种情况下,旧类和新课之间的数据失衡是导致模型性能下降的关键问题。由于数据不平衡,已经设计了几种策略来纠正新类别的偏见。但是,他们在很大程度上依赖于新旧阶层之间偏见关系的假设。因此,它们不适合复杂的现实世界应用。在这项研究中,我们提出了一种假设不足的方法,即多粒性重新平衡(MGRB),以解决此问题。重新平衡方法用于减轻数据不平衡的影响;但是,我们从经验上发现,他们将拟合新的课程。为此,我们进一步设计了一个新颖的多晶正式化项,该项使模型还可以考虑除了重新平衡数据之外的类别的相关性。类层次结构首先是通过将语义或视觉上类似类分组来构建的。然后,多粒性正则化将单热标签向量转换为连续的标签分布,这反映了基于构造的类层次结构的目标类别和其他类之间的关系。因此,该模型可以学习类间的关系信息,这有助于增强新旧课程的学习。公共数据集和现实世界中的故障诊断数据集的实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
弱监督的对象本地化(WSOL)旨在学习仅使用图像级类别标签编码对象位置的表示形式。但是,许多物体可以在不同水平的粒度标记。它是动物,鸟还是大角的猫头鹰?我们应该使用哪些图像级标签?在本文中,我们研究了标签粒度在WSOL中的作用。为了促进这项调查,我们引入了Inatloc500,这是一个新的用于WSOL的大规模细粒基准数据集。令人惊讶的是,我们发现选择正确的训练标签粒度比选择最佳的WSOL算法提供了更大的性能。我们还表明,更改标签粒度可以显着提高数据效率。
translated by 谷歌翻译
半监督学习方法已成为对打击获得大量注释数据的挑战的活跃研究领域。为了提高半监督学习方法表现的目标,我们提出了一种新颖的框架,Hiematch,一种半监督方法,利用分层信息来降低标签成本并表现以及vanilla半监督学习方法。分层信息通常是具有细粒标签的粗标签(例如,啄木鸟)的粗标签(例如,啄木鸟)的现有知识(例如,柔软的啄木鸟或金朝啄木鸟)。但是,尚未探讨使用使用粗类标签来改进半监督技术的监督。在没有细粒度的标签的情况下,Himatch利用标签层次结构,并使用粗级标签作为弱监控信号。此外,Himatch是一种改进任何半熟的学习框架的通用方法,我们使用我们的结果在最近的最先进的技术Mixmatch和Fixmatch上展示了这一点。我们评估了在两个基准数据集,即CiFar-100和Nabirds上的Himatch疗效。与MixMatch相比,HOMACHACT可以在CIFAR-100上减少50%的粒度标签50%的用量,仅在前1个精度的边缘下降0.59%。代码:https://github.com/07agarg/hiermatch.
translated by 谷歌翻译
细粒度的图像识别是具有挑战性的,因为鉴别性线索通常是碎片化的,无论是来自单个图像还是多个图像。尽管有重要的改进,但大多数现有方法仍然专注于从单个图像中的最辨别部分,忽略其他地区的信息细节,缺乏从其他相关图像的线索考虑。在本文中,我们从新的角度分析了微粒图像识别的困难,并提出了一种具有峰值抑制模块和知识引导模块的变压器架构,其尊重单个图像中辨别特征的多样化和鉴别线索的聚合在多个图像中。具体地,峰值抑制模块首先利用线性投影来将输入图像转换为顺序令牌。然后,它基于变压器编码器产生的注意响应来阻止令牌。该模块因特征学习过程中的最辨别部分而受到惩罚,因此,提高了忽视区域的信息利用。知识引导模块将从峰值抑制模块生成的基于图像的表示与被学习的知识嵌入集进行比较,以获得知识响应系数。之后,使用响应系数作为分类分数,将知识学习形式形式化为分类问题。在训练期间更新知识嵌入和基于图像的表示,以便知识嵌入包括不同图像的鉴别线索。最后,我们将所获得的知识嵌入纳入基于形象的表示,作为全面的表示,导致性能显着提高。对六个流行数据集的广泛评估证明了所提出的方法的优势。
translated by 谷歌翻译
实用的现实世界数据集具有丰富的类别,为无监督的领域适应带来了新的挑战,例如小型阶层歧视性,仅依靠域不变性的现有方法不能很好地处理。在这项工作中,我们提出了MEMSAC,该MEMSAC利用了跨源和目标域的样本级别相似性​​,以实现判别性转移,以​​及扩展到大量类别的体系结构。为此,我们首先引入一种内存增强方法,以在标记的源和未标记的目标域实例之间有效提取成对的相似性关系,该实例适用于处理任意数量的类。接下来,我们建议和理论上证明对比损失的新型变体,以促进阶层内跨域样本之间的局部一致性,同时在类别之间执行分离,从而保留从源到目标的歧视性转移。我们验证了MEMSAC的优势,比以前的最先进的最先进的转移任务有了显着改进。我们还提供了深入的分析和对MEMSAC有效性的见解。
translated by 谷歌翻译
在过去十年中,深度神经网络已经证明是擅长图像分类任务,通常在准确性方面超越人类。然而,标准神经网络通常无法理解不同类别的分层结构的概念和相关的视觉相关任务。另一方面,人类似乎在概念上学习类别,从理解高级概念下降到粒度的类别。由于神经网络无法编码其学习结构中的这种依赖性而产生的一个问题是亚泊素班次 - 其中包含从训练集类别的移位群体中获取的新型看不见的课程。由于神经网络将每个类视为独立于所有其他课程,因此它努力对依赖于等级较高的依赖的转移群体进行分类。在这项工作中,我们通过新颖的条件监督培训框架的镜头研究上述问题。我们通过结构化的学习过程来解决亚泊位偏移,通过标签将分层信息包含在一起。此外,我们介绍了图形距离的概念,以模拟错误预测的灾难性影响。我们展示了这种结构化的分层方式的学习导致对亚泊素换档更加稳健的网络,在准确度和大约8.5±8.5°的图形距离上的标准换档基准上的标准模型的速度约为8.5%。
translated by 谷歌翻译
尽管在细粒度的视觉分类(FGVC)上进行了巨大的进步,但目前的方法仍然依赖于全面监督的范式,呼叫充足的专家标签。半监督学习(SSL)技术,从未标记的数据获取知识,提供了相当大的手段,并为粗粒度问题表示了很大的承诺。但是,退出SSL范例主要假设分销(即,类别对齐的)未标记数据,这在重新提出FGVC时阻碍了其有效性。在本文中,我们提出了一种专门针对半监督FGVC的分发数据工作的新颖设计,即“将它们联系在”。我们拆除了所有细粒度类别自然遵循等级结构的重要假设(例如,“AVES”的所有鸟类的“AVES”的系统发育树)。因此,我们可以在单个样本上运行,而是可以将该树结构内的示例关系预测为SSL的优化目标。除此之外,我们进一步推出了这两种策略,这些树结构唯一带来了唯一的一致性正则化和可靠的伪关系。我们的实验结果表明,(i)所提出的方法产生良好的鲁棒性,与分发数据产生良好的稳健性,(ii)它可以配备现有技术,提高它们的性能,从而产生最先进的结果。代码可在https://github.com/pris-cv/relmatch提供。
translated by 谷歌翻译
与常规知识蒸馏(KD)不同,自我KD允许网络在没有额外网络的任何指导的情况下向自身学习知识。本文提议从图像混合物(Mixskd)执行自我KD,将这两种技术集成到统一的框架中。 Mixskd相互蒸馏以图形和概率分布在随机的原始图像和它们的混合图像之间以有意义的方式。因此,它通过对混合图像进行监督信号进行建模来指导网络学习跨图像知识。此外,我们通过汇总多阶段功能图来构建一个自学老师网络,以提供软标签以监督骨干分类器,从而进一步提高自我增强的功效。图像分类和转移学习到对象检测和语义分割的实验表明,混合物KD优于其他最先进的自我KD和数据增强方法。该代码可在https://github.com/winycg/self-kd-lib上找到。
translated by 谷歌翻译
我们提出了将粗大分类标签纳入细粒域中的图像分类器的技术。这种标签通常可以通过较小的努力来获得较小的粒状域,例如根据生物分类法组织类别的自然界。在三个王国组成的半inat数据集上,包括Phylum标签,在使用ImageNet预训练模型的转移学习设置中将物种级别分类精度提高了6%。使用称为FixMatch的最先进的半监督学习算法的分层标签结构提高了1.3%的性能。当提供诸如类或订单的详细标签或从头开始培训时,相对收益更大。但是,我们发现大多数方法对来自新类别的域名数据的存在并不强大。我们提出了一种技术来从层次结构引导的大量未标记图像中选择相关数据,这提高了鲁棒性。总体而言,我们的实验表明,具有粗大分类标签的半监督学习对于细粒度域中的培训分类器是实用的。
translated by 谷歌翻译
很少有细粒度的学习旨在将查询图像分类为具有细粒度差异的一组支持类别之一。尽管学习不同对象通过深神网络的局部差异取得了成功,但如何在基于变压器的架构中利用查询支持的跨图像对象语义关系在几个摄像机的细粒度场景中仍未得到充分探索。在这项工作中,我们提出了一个基于变压器的双螺旋模型,即HelixFormer,以双向和对称方式实现跨图像对象语义挖掘。 HelixFormer由两个步骤组成:1)跨不同分支的关系挖掘过程(RMP),以及2)在每个分支中表示增强过程(REP)。通过设计的RMP,每个分支都可以使用来自另一个分支的信息提取细粒对象级跨图义语义关系图(CSRMS),从而确保在语义相关的本地对象区域中更好地跨图像相互作用。此外,借助CSRMS,开发的REP可以增强每个分支中发现的与语义相关的局部区域的提取特征,从而增强模型区分细粒物体的细微特征差异的能力。在五个公共细粒基准上进行的广泛实验表明,螺旋形式可以有效地增强识别细颗粒物体的跨图像对象语义关系匹配,从而在1次以下的大多数先进方法中实现更好的性能,并且5击场景。我们的代码可在以下网址找到:https://github.com/jiakangyuan/helixformer
translated by 谷歌翻译
细粒度的图像分析(FGIA)是计算机视觉和模式识别中的长期和基本问题,并为一组多种现实世界应用提供了基础。 FGIA的任务是从属类别分析视觉物体,例如汽车或汽车型号的种类。细粒度分析中固有的小阶级和阶级阶级内变异使其成为一个具有挑战性的问题。利用深度学习的进步,近年来,我们在深入学习动力的FGIA中见证了显着进展。在本文中,我们对这些进展的系统进行了系统的调查,我们试图通过巩固两个基本的细粒度研究领域 - 细粒度的图像识别和细粒度的图像检索来重新定义和扩大FGIA领域。此外,我们还审查了FGIA的其他关键问题,例如公开可用的基准数据集和相关域的特定于应用程序。我们通过突出几个研究方向和开放问题,从社区中突出了几个研究方向和开放问题。
translated by 谷歌翻译
传统的细颗粒图像分类通常依赖于带注释的地面真相的大规模训练样本。但是,某些子类别在实际应用中可能几乎没有可用的样本。在本文中,我们建议使用多频邻域(MFN)和双交叉调制(DCM)提出一个新颖的几弹性细颗粒图像分类网络(FICNET)。采用模块MFN来捕获空间域和频域中的信息。然后,提取自相似性和多频成分以产生多频结构表示。 DCM使用分别考虑全球环境信息和类别之间的微妙关系来调节嵌入过程。针对两个少量任务的三个细粒基准数据集进行的综合实验验证了FICNET与最先进的方法相比具有出色的性能。特别是,在两个数据集“ Caltech-UCSD鸟”和“ Stanford Cars”上进行的实验分别可以获得分类精度93.17 \%和95.36 \%。它们甚至高于一般的细粒图像分类方法可以实现的。
translated by 谷歌翻译
旨在识别来自子类别的对象的细粒度视觉分类(FGVC)是一个非常具有挑战性的任务,因为固有的微妙级别差异。大多数现有工程主要通过重用骨干网络来提取检测到的歧视区域的特征来解决这个问题。然而,该策略不可避免地使管道复杂化并推动所提出的区域,其中大多数物体的大多数部分未能定位真正重要的部分。最近,视觉变压器(VIT)在传统的分类任务中表现出其强大的表现。变压器的自我关注机制将每个补丁令牌链接到分类令牌。在这项工作中,我们首先评估vit框架在细粒度识别环境中的有效性。然后,由于注意力的强度,可以直观地被认为是令牌重要性的指标,我们进一步提出了一种新颖的部分选择模块,可以应用于我们整合变压器的所有原始注意力的变压器架构进入注意地图,用于指导网络以有效,准确地选择鉴别的图像斑块并计算它们的关系。应用对比损失来扩大混淆类的特征表示之间的距离。我们将基于增强的变压器的模型Transfg命名,并通过在我们实现最先进的绩效的五个流行的细粒度基准测试中进行实验来展示它的价值。提出了更好地理解模型的定性结果。
translated by 谷歌翻译
Image Classification中的无监督域适应(UDA)仍然是一个很大的挑战。在现有的UDA图像数据集中,通常以扁平的方式组织类,其中可以训练普通分类器。然而在某些情况下,平面类来自一些基本类。例如,Buggies属于类鸟。我们定义类别的分类任务,其中类具有上述特征,并且平面类和基类被分级地组织为分层图像分类。直观地,利用这种分层结构将受益分层图像分类,例如,两个容易混淆的类可以属于完全不同的基类。在本文中,我们通过从标签层次结构中学到的融合功能来改善分类的性能。具体而言,我们训练由分层标签和UDA技术监督的特征提取器,它将输出输入图像的多个功能。随后将该特征连接以预测最优质的粒度。本研究与名为Lego-15的新数据集进行。由乐高砖的合成图像和真实图像组成,乐高 - 15数据集包含15级砖块。每个类源自粗级标签和中级标签。例如,类别“85080”与砖(粗略)和砖(中间)相关联。在此数据集中,我们证明我们的方法在分层图像分类中对UDA的基线进行了一致的改进。广泛的消融和变体研究提供了进入新数据集的见解和研究算法。
translated by 谷歌翻译
尽管深神经网络的占优势性能,但最近的作品表明它们校准不佳,导致过度自信的预测。由于培训期间的跨熵最小化,因此可以通过过度化来加剧错误烫伤,因为它促进了预测的Softmax概率来匹配单热标签分配。这产生了正确的类别的Pre-SoftMax激活,该类别明显大于剩余的激活。来自文献的最近证据表明,损失函数嵌入隐含或明确最大化的预测熵会产生最先进的校准性能。我们提供了当前最先进的校准损耗的统一约束优化视角。具体地,这些损失可以被视为在Logit距离上施加平等约束的线性惩罚(或拉格朗日)的近似值。这指出了这种潜在的平等约束的一个重要限制,其随后的梯度不断推动非信息解决方案,这可能会阻止在基于梯度的优化期间模型的辨别性能和校准之间的最佳妥协。在我们的观察之后,我们提出了一种基于不平等约束的简单灵活的泛化,这在Logit距离上强加了可控裕度。关于各种图像分类,语义分割和NLP基准的综合实验表明,我们的方法在网络校准方面对这些任务设置了新的最先进的结果,而不会影响辨别性能。代码可在https://github.com/by-liu/mbls上获得。
translated by 谷歌翻译