类比推理问题挑战了连接主义者和符号AI系统,因为这些系统需要将背景知识,推理和模式识别的结合。符号系统摄入显式域知识并执行演绎推理,但它们对噪声敏感,并且需要输入以预设符号特征。另一方面,Connectionist系统可以直接摄入丰富的输入空间,例如图像,文本或语音,即使使用嘈杂的输入也可以识别模式。但是,Connectionist模型努力将明确的领域知识用于演绎推理。在本文中,我们提出了一个框架,将神经网络的模式识别能力与象征性推理和背景知识结合在一起,以解决一类类似推理问题,其中一组属性和可能的​​关系是已知的。我们从“神经算法推理”方法[DeepMind 2020]中汲取灵感,并通过(i)基于问题的象征模型学习分布式表示(ii)培训神经网络转化反映了关系的分布式表示形式。参与问题,最后(iii)培训神经网络编码器,从图像到(i)中的分布式表示。这三个要素使我们能够使用神经网络作为操纵分布式表示的基本功能执行基于搜索的推理。我们在乌鸦渐进式矩阵中的视觉类比问题上进行了测试,并在人类绩效中实现准确性竞争,在某些情况下,优于初始端到端神经网络方法的方法。尽管最近接受大规模训练的神经模型产生了SOTA,但我们的新型神经符号推理方法是该问题的有希望的方向,可以说是更笼统的,尤其是对于可用的域知识的问题。
translated by 谷歌翻译
解决视觉推理测试的计算学习方法,例如Raven的渐进式矩阵(RPM),非常取决于识别测试中使用的视觉概念(即表示)以及基于这些概念(即,推理)。然而,学习表示和推理是一项具有挑战性且不足的任务,经常以舞台的方式(首先表示,然后推理)接近。在这项工作中,我们提出了一个端到端的联合代表性学习框架,该框架利用了弱的归纳偏见形式来共同改善这两项任务。具体而言,我们引入了RPMS,GM-RPM的一般生成图形模型,并将其应用于解决推理测试。我们使用基于GM-RPM原理的基于基于的抽象推理网络(DAREN)的新型学习框架来完成此操作。我们对Daren进行了多个基准数据集的经验评估。 Daren在推理和分离任务上都表现出对最先进的模型(SOTA)模型的一致改进。这证明了分离的潜在表示与解决抽象视觉推理任务的能力之间的密切相关性。
translated by 谷歌翻译
我们考虑一类视觉模拟推理问题,涉及发现输入/输出图像对相关的转换序列,以类似地改变未来输入。该程序综合任务可以通过符号搜索轻松解决。使用(Velickovic和Blundell 2021)的“神经模拟推理”方法的变化,Edw,例如,搜索一系列基本神经网络变换,其操纵从符号空间导出的分布式表示,输入图像直接编码。我们评估了我们的“神经原理”方法对具有看不见形状和位置的图像的程度。
translated by 谷歌翻译
我们提出了一种新颖的计算模型“ Savir-T”,用于在Raven的渐进式矩阵(RPM)中体现的视觉推理问题。我们的模型考虑了拼图中每个图像中视觉元素的显式空间语义,编码为时空视标,并了解内部图像以及图像的依赖依赖性依赖性,与视觉推理任务高度相关。通过基于变压器的SAVIR-T体系结构建模的令牌关系,提取组(行或列)通过利用组规则相干性并将其用作电感偏置来提取前两行中的基本规则表示形式,从而引起了提取组(行或列)驱动的表示形式(或列)RPM中的每个令牌。我们使用此关系表示形式来找到正确的选择图像,该图像完成了RPM的最后一行或列。在两个合成RPM基准测试中进行了广泛的实验,包括Raven,I-Raven,Raven-Fair和PGM以及基于自然图像的“ V-Prom”,这表明Savir-T为视觉设定了新的最新时间推理,超过了先前模型的性能。
translated by 谷歌翻译
人工智能的最终目标之一是从原始数据中学习通用和人类解剖知识。神经符号推理方法通过使用手动设计的符号知识库改善神经网络的训练来部分解决此问题。在从原始数据中学到符号知识的情况下,该知识缺乏解决复杂问题所需的表现力。在本文中,我们介绍了神经符号归纳学习者(NSIL),该方法训练神经网络从原始数据中提取潜在概念,而学习符号知识可以解决复杂问题,该知识是根据这些潜在概念定义的。我们方法的新颖性是一种基于神经和符号成分的训练性能,使符号学习者偏向于学习改进的知识的方法。我们评估了两个问题领域的NSIL,这些问题领域需要具有不同级别的复杂性学习知识,并证明NSIL学习知识,而这些知识是不可能使用其他神经符号系统学习的知识,同时就准确性和数据效率而言优于基线模型。
translated by 谷歌翻译
近年来,随着新颖的策略和应用,神经网络一直在迅速扩展。然而,尽管不可避免地会针对关键应用程序来解决这些挑战,例如神经网络技术诸如神经网络技术中仍未解决诸如神经网络技术的挑战。已经尝试通过用符号表示来表示和嵌入域知识来克服神经网络计算中的挑战。因此,出现了神经符号学习(Nesyl)概念,其中结合了符号表示的各个方面,并将常识带入神经网络(Nesyl)。在可解释性,推理和解释性至关重要的领域中,例如视频和图像字幕,提问和推理,健康信息学和基因组学,Nesyl表现出了有希望的结果。这篇综述介绍了一项有关最先进的Nesyl方法的全面调查,其原理,机器和深度学习算法的进步,诸如Opthalmology之类的应用以及最重要的是该新兴领域的未来观点。
translated by 谷歌翻译
结合神经网络的鲁棒性的目标和象征方法的表征性地重新称为神经象征性AI的兴趣。神经象征性AI的最近进步通常考虑由不相交的神经和符号组件组成的专门定制架构,因此不能表现出所需的增益,这通过将它们集成到统一框架中可以实现。我们介绍斜杠 - 一种新颖的深层概率编程语言(DPPL)。在其核心,斜杠由神经概率谓词(NPPS)和逻辑节目组成,通过答案集编程团结一致。由NPPS产生的概率估计用作逻辑程序和原始输入数据之间的绑定元素,从而允许斜杠来应答任务依赖的逻辑查询。这允许斜杠在统一的框架中优雅地集成符号和神经组件。我们评估Mnist加法的基准数据的斜杠以及DPPLS的新任务,例如缺少数据预测和与最先进的性能设置预测,从而显示了我们方法的有效性和一般性。
translated by 谷歌翻译
乌鸦的进步矩阵(RPMS)经常用于评估人类的视觉推理能力。研究人员在开发一个系统方面取得了相当大的努力,这些系统通常通过黑盒端到端卷积神经网络(CNN)用于视觉识别和逻辑推理任务。为了开发一个高度可解释的解决方案的目标,我们提出了一次性的人为可理解的推理(OS-HURS),这是一个两步框架,包括一种感知模块和推理模块,以解决现实世界的挑战可视识别和随后的逻辑推理任务。对于推理模块,我们提出了一种“2 + 1”制剂,可以通过人类更好地理解,并显着降低模型复杂性。因此,可以仅从一个RPM示例推导出精确推理规则,这对于现有解决方案方法来说是不可行的。所提出的推理模块还能够产生一系列推理规则,精确地建模人类知识来解决RPM问题。为了验证真实应用程序的提出方法,构建了RPM样单射帧预测(ROF)数据集,其中在使用现实世界视频帧而不是合成图像构造的RPM上进行视觉推理。各种RPM样数据集上的实验结果表明,与最先进的模型相比,所提出的OS-HUR达到了显着且一致的性能增益。
translated by 谷歌翻译
尽管在现代的机器学习算法的最新进展,其内在机制的不透明仍是采用的障碍。在人工智能系统灌输信心和信任,解释的人工智能已成为提高现代机器学习算法explainability的响应。归纳逻辑程序(ILP),符号人工智能的子场中,起着产生,因为它的直观的逻辑驱动框架的可解释的解释有希望的作用。 ILP有效利用绎推理产生从实例和背景知识解释的一阶分句理论。然而,在发展中通过ILP需要启发方法的几个挑战,在实践中他们的成功应用来解决。例如,现有的ILP系统通常拥有广阔的解空间,以及感应解决方案是对噪声和干扰非常敏感。本次调查总结在ILP的最新进展和统计关系学习和神经象征算法的讨论,其中提供给ILP协同意见。继最新进展的严格审查,我们划定观察的挑战,突出对发展不言自明的人工智能系统进一步ILP动机研究的潜在途径。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
尽管深度神经网络(DNNS)具有很大的概括和预测能力,但它们的功能不允许对其行为进行详细的解释。不透明的深度学习模型越来越多地用于在关键环境中做出重要的预测,而危险在于,它们做出和使用不能合理或合法化的预测。已经出现了几种可解释的人工智能(XAI)方法,这些方法与机器学习模型分开了,但对模型的实际功能和鲁棒性具有忠诚的缺点。结果,就具有解释能力的深度学习模型的重要性达成了广泛的协议,因此他们自己可以为为什么做出特定的预测提供答案。首先,我们通过形式化解释是什么是缺乏XAI的普遍标准的问题。我们还引入了一组公理和定义,以从数学角度阐明XAI。最后,我们提出了Greybox XAI,该框架由于使用了符号知识库(KB)而构成DNN和透明模型。我们从数据集中提取KB,并使用它来训练透明模型(即逻辑回归)。在RGB图像上训练了编码器 - 编码器架构,以产生类似于透明模型使用的KB的输出。一旦两个模型被独立训练,它们就会在组合上使用以形成可解释的预测模型。我们展示了这种新体系结构在几个数据集中如何准确且可解释的。
translated by 谷歌翻译
我们提出了一种新颖的通用方法,该方法可以找到动作的,离散的对象和效果类别,并为非平凡的行动计划建立概率规则。我们的机器人使用原始操作曲目与对象进行交互,该曲目被认为是早先获取的,并观察到它在环境中可以产生的效果。为了形成动作界面的对象,效果和关系类别,我们在预测性的,深的编码器折线网络中采用二进制瓶颈层,该网络以场景的形象和应用为输入应用的动作,并在场景中生成结果效果在像素坐标中。学习后,二进制潜在向量根据机器人的相互作用体验代表动作驱动的对象类别。为了将神经网络代表的知识提炼成对符号推理有用的规则,对决策树进行了训练以复制其解码器功能。概率规则是从树的决策路径中提取的,并在概率计划域定义语言(PPDDL)中表示,允许现成的计划者根据机器人的感觉运动体验所提取的知识进行操作。模拟机器人操纵器的建议方法的部署使发现对象属性的离散表示,例如``滚动''和``插入''。反过来,将这些表示形式用作符号可以生成有效的计划来实现目标,例如建造所需高度的塔楼,证明了多步物体操纵方法的有效性。最后,我们证明了系统不仅通过评估其对MNIST 8个式式域的适用性来限于机器人域域,在该域​​中,学习的符号允许生成将空图块移至任何给定位置的计划。
translated by 谷歌翻译
虽然深增强学习已成为连续决策问题的有希望的机器学习方法,但对于自动驾驶或医疗应用等高利害域来说仍然不够成熟。在这种情况下,学习的政策需要例如可解释,因此可以在任何部署之前检查它(例如,出于安全性和验证原因)。本调查概述了各种方法,以实现加固学习(RL)的更高可解释性。为此,我们将解释性(作为模型的财产区分开来和解释性(作为HOC操作后的讲话,通过代理的干预),并在RL的背景下讨论它们,并强调前概念。特别是,我们认为可译文的RL可能会拥抱不同的刻面:可解释的投入,可解释(转型/奖励)模型和可解释的决策。根据该计划,我们总结和分析了与可解释的RL相关的最近工作,重点是过去10年来发表的论文。我们还简要讨论了一些相关的研究领域并指向一些潜在的有前途的研究方向。
translated by 谷歌翻译
我们提出了神经概率软逻辑(NEUPSL),这是一种新型的神经符号(NESY)框架,将最新的象征性推理与对深神经网络的低水平感知结合在一起。为了明确建模神经和符号表示之间的边界,我们引入了基于NESY Energy模型,这是一个结合神经和符号推理的基于能量的一般模型。使用此框架,我们展示了如何无缝整合神经和符号参数学习和推理。我们进行广泛的经验评估,并表明NEUPSL优于关节推断的现有方法,并且在几乎所有设置中的差异都显着降低。
translated by 谷歌翻译
内容的离散和连续表示(例如,语言或图像)具有有趣的属性,以便通过机器的理解或推理此内容来探索或推理。该职位论文提出了我们关于离散和持续陈述的作用及其在深度学习领域的作用的意见。目前的神经网络模型计算连续值数据。信息被压缩成密集,分布式嵌入式。通过Stark对比,人类在他们的语言中使用离散符号。此类符号代表了来自共享上下文信息的含义的世界的压缩版本。此外,人工推理涉及在认知水平处符号操纵,这促进了抽象的推理,知识和理解的构成,泛化和高效学习。通过这些见解的动机,在本文中,我们认为,结合离散和持续的陈述及其处理对于构建展示一般情报形式的系统至关重要。我们建议并讨论了几个途径,可以在包含离散元件来结合两种类型的陈述的优点来改进当前神经网络。
translated by 谷歌翻译
Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.
translated by 谷歌翻译
神经符号(NESY)集成将符号推理与神经网络(NNS)结合在一起,用于需要感知和推理的任务。大多数NESY系统都依赖于逻辑知识的持续放松,并且在模型管道中没有做出离散决策。此外,这些方法假定给出了符号规则。在本文中,我们提出了深入的符号学习(DSL),这是一个学习NESY函数的NESY系统,即,(集合)感知函数的组成,将连续数据映射到离散符号,以及一组符号功能符号。 DSL同时学习感知和符号功能,同时仅接受其组成(NESY功能)训练。 DSL的关键新颖性是它可以创建内部(可解释的)符号表示形式,并将其映射到可区分的NN学习管道中的感知输入。自动选择创建的符号以生成最能解释数据的符号函数。我们提供实验分析,以证实DSL在同时学习感知和符号功能中的功效。
translated by 谷歌翻译
抽象推理是指分析信息,以无形层面发现规则以及以创新方式解决问题的能力。 Raven的渐进式矩阵(RPM)测试通常用于检查抽象推理的能力。要求受试者从答案集中确定正确的选择,以填充RPM右下角(例如,3 $ \ times $ 3矩阵),按照矩阵内的基本规则。最近利用卷积神经网络(CNN)的研究取得了令人鼓舞的进步,以实现RPM测试。但是,它们部分忽略了RPM求解器的必要归纳偏置,例如每个行/列内的订单灵敏度和增量规则诱导。为了解决这个问题,在本文中,我们提出了一个分层的规则感知网络(SRAN),以生成两个输入序列的规则嵌入。我们的SRAN学习了不同级别的多个粒度规则嵌入,并通过封闭的融合模块逐步整合了分层的嵌入流。借助嵌入,应用规则相似性度量标准来确保SRAN不仅可以使用Tuplet损失对SRAN进行训练,还可以有效地推断出最佳答案。我们进一步指出,用于RPM测试的流行Raven数据集中存在的严重缺陷,这阻止了对抽象推理能力的公平评估。为了修复缺陷,我们提出了一种称为属性分配树(ABT)的答案集合生成算法,形成了一个改进的数据集(简称I-Raven)。在PGM和I-Raven数据集上进行了广泛的实验,这表明我们的Sran的表现优于最先进的模型。
translated by 谷歌翻译
人们容易概括到新型域和刺激的知识。我们提出了一种在计算模型中实例化的理论,基于跨域人类中的跨域泛化是对结构化(即,象征性)关系表示的模拟推断的情况。该模型是LISA和关系推论和学习的DORA模型的延伸。生成的模型在没有监控的情况下,从非关系输入中的关系和格式(即结构)(即,结构)既与强化学习的容量增强,利用这些表示来学习单个域,然后向新域推广首先通过模拟推理(即零拍摄学习)。我们展示了模型从各种简单的视觉刺激学习结构化关系表示的能力,并在视频游戏(突破和乒乓球)和几个心理任务之间进行跨域泛化。我们展示了模型的轨迹在学到关系时,旨在让孩子的轨迹镜头紧密地镜子,从文学中占据了儿童推理和类比制作的文献中的现象。该模型在域之间的概括能力展示了在其基础关系结构方面代表域的灵活性,而不是简单地就其投入和产出之间的统计关系而言。
translated by 谷歌翻译
人工智能(AI)的一个重要方面是以逐步的“算法”方式能够以其正确性检查和验证的逐步的“算法”方式。这在问题答案领域(QA)尤其重要。我们认为,可以有效地用QA中的算法推理的挑战用AI的“系统”方法有效地解决,该方法具有包括深神经网络的符号和子象征方法的混合使用。此外,我们认为,虽然具有端到端训练管道的神经网络模型在狭窄的应用中表现出良好的窄应用,但它们不能独立地成功执行算法推理,特别是如果任务跨越多个域。我们讨论了一些显着的例外,并指出,当QA问题扩大到包括其他需要其他智能任务时,它们仍然有限。但是,深度学习和机器学习一般,确实在推理过程中扮演重要角色作为组件。我们提出了一种基于三个理想的特性的QA,深算法问题应答(DAQA)的算法推理方法:这种AI系统应该具有的解释性,概括性和鲁棒性,并得出结论,它们最好地通过混合的组合实现和组成ai。
translated by 谷歌翻译