三维(3D)综合肾脏结构(IRS)分割在临床实践中很重要。随着深度学习技术的发展,提出了许多专注于医学图像细分的强大框架。在这一挑战中,我们利用了NNU-NET框架,这是医学图像分割的最新方法。为了减少肿瘤标签的异常预测,我们将肿瘤标签的轮廓正则化(CR)丢失与骰子丢失和横向渗透丢失相结合,以改善这种现象。
translated by 谷歌翻译
来自3D CTA的多结构(即肾脏,肾脏,动脉和静脉)的准确和自动分割是基于手术的肾脏癌治疗的最重要任务之一(例如,腹腔镜部分肾切除术)。本文简要介绍了MICCAI 2022 KIPA挑战中多结构SEG-Interation方法的主要技术细节。本文的主要贡献是,我们设计具有大量上下文信息限制功能的3D UNET。我们的方法在MICCAI 2022 KIPA CHAL-LENGE开放测试数据集上排名第八,平均位置为8.2。我们的代码和训练有素的模型可在https://github.com/fengjiejiejiejie/kipa22_nnunet上公开获得。
translated by 谷歌翻译
计算机断层扫描(CTA)图像上的三维(3D)肾脏解析具有极大的临床意义。肾脏,肾肿瘤,肾静脉和肾动脉的自动分割在基于手术的肾癌治疗方面受益匪浅。在本文中,我们提出了一个新的NNHRA-UNET网络,并使用一个基于它的多阶段框架来细分肾脏的多结构并参加KIPA2022挑战。
translated by 谷歌翻译
Glioblastomas是最具侵略性的快速生长的主要脑癌,起源于大脑的胶质细胞。准确鉴定恶性脑肿瘤及其子区域仍然是医学图像分割中最具挑战性问题之一。脑肿瘤分割挑战(Brats)是自动脑胶质细胞瘤分割算法的流行基准,自于其启动。在今年的挑战中,Brats 2021提供了2,000名术前患者的最大多参数(MPMRI)数据集。在本文中,我们提出了两个深度学习框架的新聚合,即在术前MPMRI中的自动胶质母细胞瘤识别的Deepseg和NNU-Net。我们的集合方法获得了92.00,87.33和84.10和Hausdorff距离为3.81,8.91和16.02的骰子相似度分数,用于增强肿瘤,肿瘤核心和全肿瘤区域,单独进行。这些实验结果提供了证据表明它可以在临床上容易地应用,从而助攻脑癌预后,治疗计划和治疗反应监测。
translated by 谷歌翻译
多模式性荧光脱氧葡萄糖(FDG)正电子发射断层扫描 /计算机断层扫描(PET / CT)已常规用于评估常见癌症,例如肺癌,淋巴瘤和黑色素瘤。这主要归因于以下事实:PET/CT结合了对PET肿瘤检测的高灵敏度和CT的解剖学信息。在PET/CT图像评估中,自动肿瘤分割是重要的一步,近年来,基于深度学习的方法已成为最新方法。不幸的是,现有的方法倾向于过度细分肿瘤区域,并包括正常摄取器官,炎症和其他感染等区域。在这项研究中,我们引入了一个假阳性还原网络以克服这一限制。我们首先引入了一个自制的预训练的全球分割模块,以使用自我监督的预训练的编码器粗糙地描绘候选肿瘤区域。然后,通过局部细化模块去除假阳性来完善候选肿瘤区域。我们对MICCAI 2022自动病变分割的实验在全身FDG-PET/CT(AUTOPET)挑战数据集中表明,我们的方法在初步测试数据中获得了0.9324的骰子得分,并在排行榜上排名第一。我们的方法在最终测试数据的前7位方法中也排名,最终排名将在2022 MICCAI AUTOPET研讨会期间宣布。我们的代码可在以下网址提供:https://github.com/yigepeng/autopet_false_posisity_reduction。
translated by 谷歌翻译
肾癌是最常见的癌症类型之一。治疗经常包括手术干预。但是,在这种情况下,由于区域解剖关系,手术尤其具有挑战性。器官描述可以显着改善手术计划和执行。在这一贡献中,我们提出了两个完全卷积网络的合奏,以分割肾脏,肿瘤,静脉和动脉。尽管Segresnet架构在肿瘤上取得了更好的性能,但NNU-NET为肾脏,动脉和静脉提供了更精确的分割。因此,在我们提出的方法中,我们结合了这两个网络,并通过增加混合增强进一步提高了性能。
translated by 谷歌翻译
尽管存在能够在许多医疗数据集上表现出很好的语义分割方法,但是通常,它们不设计用于直接用于临床实践。两个主要问题是通过不同的视觉外观的解开数据的概括,例如,使用不同的扫描仪获取的图像,以及计算时间和所需图形处理单元(GPU)存储器的效率。在这项工作中,我们使用基于SpatialConfiguration-Net(SCN)的多器官分段模型,该模型集成了标记器官中的空间配置的先验知识,以解决网络输出中的虚假响应。此外,我们修改了分割模型的体系结构,尽可能地减少其存储器占用空间,而不会急剧影响预测的质量。最后,我们实现了最小的推理脚本,我们优化了两者,执行时间和所需的GPU内存。
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
由于缺乏明显的特征,严重的阶级失衡以及大小本身,找到小病变非常具有挑战性。改善小病变细分的一种方法是减少感兴趣的区域,并以更高的灵敏度进行检查,而不是为整个区域执行它。通常将其作为器官和病变的顺序或关节分割实现,这需要对器官分割进行额外的监督。取而代之的是,我们建议以无其他标记成本的强度分布来有效地分开病变位于背景的区域。它被整合到网络培训中,作为一项辅助任务。我们将提出的方法应用于CT扫描中小肠癌小肿瘤的分割。我们观察到所有指标的改进(33.5%$ \ rightarrow $ 38.2%,41.3%$ \ rightarrow $ 47.8%,30.0%$ \ rightarrow $ \ rightarrow $ 35.9%的全球,每个案例和每个肿瘤骰子得分相比)。对于基线方法,这证明了我们想法的有效性。我们的方法可以是将目标的强度分布信息显式合并到网络培训中的一种选择。
translated by 谷歌翻译
具有多级连接的深度神经网络,以复杂的方式进程输入数据来了解信息。网络学习效率不仅取决于复杂的神经网络架构,还取决于输入训练图像。具有用于头骨剥离或肿瘤的深神经网络的Medical图像分段。来自磁共振图像的分割使得能够学习图像的全局和局部特征。虽然收集在受控环境中的医学图像,但可能存在导致输入集中固有偏差的伪影或基于设备的方差。在本研究中,我们调查了具有神经网络分割精度的MR图像的图像质量指标的相关性。我们使用了3D DenSenet架构,并让网络在相同的输入上培训,但应用不同的方法来基于IQM值选择训练数据集。基于随机训练的模型之间的分割精度的差异基于IQM的训练输入揭示了图像质量指标对分割精度的作用。通过运行图像质量指标来选择培训输入,进一步调整网络的学习效率和分割精度。
translated by 谷歌翻译
肾脏结构细分是计算机辅助诊断基于手术的肾癌的至关重要但具有挑战性的任务。尽管许多深度学习模型在许多医学图像分割任务中取得了显着的成功,但由于肾脏肿瘤的尺寸可变,肾脏肿瘤及其周围环境之间的歧义范围可变,因此对计算机层析造影血管造影(CTA)图像的肾脏结构的准确分割仍然具有挑战性。 。在本文中,我们在CTA扫描中提出了一个边界感知网络(BA-NET),以分段肾脏,肾脏肿瘤,动脉和静脉。该模型包含共享编码器,边界解码器和分割解码器。两个解码器都采用了多尺度的深度监督策略,这可以减轻肿瘤大小可变的问题。边界解码器在每个量表上产生的边界概率图被用作提高分割特征图的注意。我们在肾脏解析(KIPA)挑战数据集上评估了BA-NET,并通过使用4倍的交叉验证来实现CTA扫描的肾脏结构细分的平均骰子得分为89.65 $ \%$。结果证明了BA-NET的有效性。
translated by 谷歌翻译
头颈肿瘤分割挑战(Hecktor)2022为研究人员提供了一个平台,可以将其解决方案与3D CT和PET图像的肿瘤和淋巴结分割。在这项工作中,我们描述了针对Hecktor 2022分割任务的解决方案。我们将所有图像重新样本为共同的分辨率,在头颈部和颈部区域周围的作物,并从Monai训练Segresnet语义分割网络。我们使用5倍的交叉验证来选择最佳模型检查点。最终提交是3次运行中的15个型号的合奏。我们的解决方案(NVAUTO团队名称)以0.78802的汇总骰子得分在Hecktor22挑战排行榜上获得第一名。
translated by 谷歌翻译
脑肿瘤细分对于胶质瘤患者的诊断和预后至关重要。脑肿瘤分割挑战赛继续提供一种开发自动算法来执行任务的伟大数据来源。本文介绍了我们对2021年竞争的贡献。我们开发了基于NN-UNET的方法,去年竞争的胜利。我们尝试了多种修改,包括使用较大的网络,用组标准化替换批量归一化,并在解码器中使用轴向注意力。内部5倍交叉验证以及组织者的在线评估显示了我们的方法的有效性,与基线相比,定量度量的微小改善。拟议的型号在最终排名上赢得了未经证明的测试数据的第一名。获奖提交的代码,备用重量和Docker图像在https://github.com/rixez/brats21_kaist_mri_lab上公开可用
translated by 谷歌翻译
我们实施了两个不同的三维深度学习神经网络,并评估了它们在非对比度计算机断层扫描(CT)上看到的颅内出血(ICH)的能力。一种模型,称为“沿正交关注u-net沿正交级别的素隔离”(Viola-Unet),其体系结构元素可适应2022年实例的数据挑战。第二个比较模型是从No-New U-NET(NNU-NET)得出的。输入图像和地面真理分割图用于以监督方式分别训练两个网络。验证数据随后用于半监督培训。在5倍交叉验证期间比较了模型预测。中提琴 - UNET的表现优于四个性能指标中的两个(即NSD和RVD)的比较网络。将中提琴和NNU-NET网络组合的合奏模型在DSC和HD方面的性能最高。我们证明,与3D U-NET相关的ICH分割性能优势有效地合并了U-NET的解码分支期间的空间正交特征。 Viola-Unet AI工具的代码基础,预估计的权重和Docker图像将在https://github.com/samleoqh/viola-unet上公开获得。
translated by 谷歌翻译
从侵入性冠状动脉造影(ICA)中准确提取冠状动脉(ICA)在临床决策中对于冠状动脉疾病的诊断和风险分层(CAD)很重要。在这项研究中,我们开发了一种使用深度学习来自动提取冠状动脉腔的方法。方法。提出了一个深度学习模型U-NET 3+,其中包含了全面的跳过连接和深度监督,以自动从ICAS中自动提取冠状动脉。在这个新型的冠状动脉提取框架中采用了转移学习和混合损失功能。结果。使用了一个包含从210名患者获得的616个ICA的数据集。在技​​术评估中,U-NET 3+的骰子得分为0.8942,灵敏度为0.8735,高于U-NET ++(骰子得分:0.8814:0.8814,灵敏度为0.8331)和U-net(骰子分数) :0.8799,灵敏度为0.8305)。结论。我们的研究表明,U-NET 3+优于其他分割框架,用于自动从ICA中提取冠状动脉。该结果表明了临床使用的巨大希望。
translated by 谷歌翻译
来自磁共振成像(MRI)数据的自动脑肿瘤分割在评估治疗和个性化治疗分层的肿瘤反应中起重要作用.Manual分割是乏味的,主观的脑肿瘤细分算法有可能提供目标并且快速肿瘤分割。但是,这种算法的培训需要大量数据集,这些数据集并不总是可用的。数据增强技术可以减少对大型数据集的需求。然而,当前方法主要是参数,并且可能导致次优的性能。我们引入了两个非参数化的脑肿瘤分割的数据增强方法:混合结构正则化(MSR)和Shuffle像素噪声(SPN).we评估了MSR和SPN增强对大脑肿瘤分割(BRATS)2018挑战数据集的附加值与编码器 - 解码器NNU-NNU-NNU-NET架构作为分割算法。从MSR和SPN改善NNU-NET分段与参数高斯噪声增强相比的准确性。当分别将MSR与肿瘤核心和全肿瘤实验的非参数增强分别增加了80%至82%和p值= 0.0022,00028。所提出的MSR和SPN增强有可能在其他任务中提高神经网络性能。
translated by 谷歌翻译
Background samples provide key contextual information for segmenting regions of interest (ROIs). However, they always cover a diverse set of structures, causing difficulties for the segmentation model to learn good decision boundaries with high sensitivity and precision. The issue concerns the highly heterogeneous nature of the background class, resulting in multi-modal distributions. Empirically, we find that neural networks trained with heterogeneous background struggle to map the corresponding contextual samples to compact clusters in feature space. As a result, the distribution over background logit activations may shift across the decision boundary, leading to systematic over-segmentation across different datasets and tasks. In this study, we propose context label learning (CoLab) to improve the context representations by decomposing the background class into several subclasses. Specifically, we train an auxiliary network as a task generator, along with the primary segmentation model, to automatically generate context labels that positively affect the ROI segmentation accuracy. Extensive experiments are conducted on several challenging segmentation tasks and datasets. The results demonstrate that CoLab can guide the segmentation model to map the logits of background samples away from the decision boundary, resulting in significantly improved segmentation accuracy. Code is available.
translated by 谷歌翻译
深度学习技术的进步为生物医学图像分析应用产生了巨大的贡献。随着乳腺癌是女性中最致命的疾病,早期检测是提高生存能力的关键手段。如超声波的医学成像呈现出色器官功能的良好视觉表现;然而,对于任何分析这种扫描的放射科学家,这种扫描是挑战和耗时,这延迟了诊断过程。虽然提出了各种深度学习的方法,但是通过乳房超声成像介绍了具有最有效的残余交叉空间关注引导u-Net(RCA-IUnet)模型的最小训练参数,以进一步改善肿瘤分割不同肿瘤尺寸的分割性能。 RCA-IUNET模型跟随U-Net拓扑,剩余初始化深度可分离卷积和混合池(MAX池和光谱池)层。此外,添加了交叉空间注意滤波器以抑制无关的特征并专注于目标结构。建议模型的分割性能在使用标准分割评估指标的两个公共数据集上验证,其中它表现出其他最先进的分段模型。
translated by 谷歌翻译
肺癌是世界大多数国家的死亡原因。由于提示肿瘤的诊断可以允许肿瘤学家辨别他们的性质,类型和治疗方式,CT扫描图像的肿瘤检测和分割是全球的关键研究领域。本文通过在Lotus DataSet上应用二维离散小波变换(DWT)来接近肺肿瘤分割,以进行更细致的纹理分析,同时将来自相邻CT切片的信息集成到馈送到深度监督的多路仓模型之前。在训练网络的同时,学习速率,衰减和优化算法的变化导致了不同的骰子共同效率,其详细统计数据已经包含在本文中。我们还讨论了此数据集中的挑战以及我们选择如何克服它们。本质上,本研究旨在通过试验多个适当的网络来最大化从二维CT扫描切片预测肿瘤区域的成功率,导致骰子共同效率为0.8472。
translated by 谷歌翻译
肾癌是全球最普遍的癌症之一。肾癌的临床体征包括血尿和下背部不适,这对患者非常痛苦。由于人工智能和深度学习的快速增长,在过去的几年中,医学图像分割发生了巨大的发展。在本文中,我们提出了用于肾脏多结构分割的修改NN-UNET。我们的解决方案是使用3D完整分辨率U-NET建立在蓬勃发展的NN-UNET架构上的。首先,为此特定任务修改了各种超参数。然后,通过将3D完整分辨率NNUNET体系结构中的过滤器数量加倍,以实现更大的网络,我们可能会捕获更大的接收场。最后,我们在解码器中包括一个轴向注意机制,可以在解码阶段获得全局信息,以防止局部知识的丧失。与3D U-NET,MNET等传统方法相比,我们修改的NN-UNET在KIPA2022数据集上实现了最新的性能。
translated by 谷歌翻译