生物医学实体的因果关系提取是生物医学文本挖掘中最复杂的任务之一,涉及两种信息:实体关系和实体功能。一种可行的方法是将关系提取和功能检测作为两个独立的子任务。但是,这种单独的学习方法忽略了它们之间的内在相关性,并导致性能不令人满意。在本文中,我们提出了一个联合学习模型,该模型结合了实体关系提取和实体功能检测以利用其共同点并捕获其相互关系,以提高生物医学因果关系提取的性能。同时,在模型训练阶段,损失函数中的不同功能类型分配了不同的权重。具体而言,负功能实例的惩罚系数增加以有效提高功能检测的精度。 Biocreative-V轨道4语料库的实验结果表明,我们的联合学习模型在BEL语句提取中的表现优于单独的模型,在第2阶段和第1阶段评估中的测试集中,F1得分分别达到58.4%和37.3%。这表明,与其他系统相比,我们的联合学习系统达到了第2阶段的最新性能。
translated by 谷歌翻译
The development of deep neural networks has improved representation learning in various domains, including textual, graph structural, and relational triple representations. This development opened the door to new relation extraction beyond the traditional text-oriented relation extraction. However, research on the effectiveness of considering multiple heterogeneous domain information simultaneously is still under exploration, and if a model can take an advantage of integrating heterogeneous information, it is expected to exhibit a significant contribution to many problems in the world. This thesis works on Drug-Drug Interactions (DDIs) from the literature as a case study and realizes relation extraction utilizing heterogeneous domain information. First, a deep neural relation extraction model is prepared and its attention mechanism is analyzed. Next, a method to combine the drug molecular structure information and drug description information to the input sentence information is proposed, and the effectiveness of utilizing drug molecular structures and drug descriptions for the relation extraction task is shown. Then, in order to further exploit the heterogeneous information, drug-related items, such as protein entries, medical terms and pathways are collected from multiple existing databases and a new data set in the form of a knowledge graph (KG) is constructed. A link prediction task on the constructed data set is conducted to obtain embedding representations of drugs that contain the heterogeneous domain information. Finally, a method that integrates the input sentence information and the heterogeneous KG information is proposed. The proposed model is trained and evaluated on a widely used data set, and as a result, it is shown that utilizing heterogeneous domain information significantly improves the performance of relation extraction from the literature.
translated by 谷歌翻译
Neural language representation models such as BERT pre-trained on large-scale corpora can well capture rich semantic patterns from plain text, and be fine-tuned to consistently improve the performance of various NLP tasks. However, the existing pre-trained language models rarely consider incorporating knowledge graphs (KGs), which can provide rich structured knowledge facts for better language understanding. We argue that informative entities in KGs can enhance language representation with external knowledge. In this paper, we utilize both large-scale textual corpora and KGs to train an enhanced language representation model (ERNIE), which can take full advantage of lexical, syntactic, and knowledge information simultaneously. The experimental results have demonstrated that ERNIE achieves significant improvements on various knowledge-driven tasks, and meanwhile is comparable with the state-of-the-art model BERT on other common NLP tasks. The source code and experiment details of this paper can be obtained from https:// github.com/thunlp/ERNIE.
translated by 谷歌翻译
生物医学文献中的自动关系提取(RE)对于研究和现实世界中的许多下游文本挖掘应用至关重要。但是,用于生物医学的大多数现有基准测试数据集仅关注句子级别的单一类型(例如蛋白质 - 蛋白质相互作用)的关系,从而极大地限制了生物医学中RE系统的开发。在这项工作中,我们首先审查了常用的名称实体识别(NER)和RE数据集。然后,我们提出了Biored,这是一种具有多种实体类型(例如,基因/蛋白质,疾病,化学)和关系对(例如,基因 - 疾病;化学化学化学化学)的首个生物医学RE语料库,在文档水平上,在一组600个PubMed摘要中。此外,我们将每个关系标记为描述一种新颖的发现或先前已知的背景知识,使自动化算法能够区分新颖和背景信息。我们通过基准在NER和RE任务上对几种现有的最新方法(包括基于BERT的模型)进行基准测试来评估Biored的实用性。我们的结果表明,尽管现有方法可以在NER任务上达到高性能(F-评分为89.3%),但重新任务的改进空间很大,尤其是在提取新颖的关系时(F-评分为47.7%)。我们的实验还表明,如此丰富的数据集可以成功地促进生物医学更准确,高效和健壮的RE系统的开发。 Biored数据集和注释指南可在https://ftp.ncbi.nlm.nih.gov/pub/lu/biored/中免费获得。
translated by 谷歌翻译
来自文本的采矿因果关系是一种复杂的和至关重要的自然语言理解任务,对应于人类认知。其解决方案的现有研究可以分为两种主要类别:基于特征工程和基于神经模型的方法。在本文中,我们发现前者具有不完整的覆盖范围和固有的错误,但提供了先验知识;虽然后者利用上下文信息,但其因果推断不足。为了处理限制,我们提出了一个名为MCDN的新型因果关系检测模型,明确地模拟因果关系,而且,利用两种方法的优势。具体而言,我们采用多头自我关注在Word级别获得语义特征,并在段级别推断出来的SCRN。据我们所知,关于因果关系任务,这是第一次应用关系网络。实验结果表明:1)该方法对因果区检测进行了突出的性能; 2)进一步分析表现出MCDN的有效性和稳健性。
translated by 谷歌翻译
Biomedical named entity recognition (BioNER) seeks to automatically recognize biomedical entities in natural language text, serving as a necessary foundation for downstream text mining tasks and applications such as information extraction and question answering. Manually labeling training data for the BioNER task is costly, however, due to the significant domain expertise required for accurate annotation. The resulting data scarcity causes current BioNER approaches to be prone to overfitting, to suffer from limited generalizability, and to address a single entity type at a time (e.g., gene or disease). We therefore propose a novel all-in-one (AIO) scheme that uses external data from existing annotated resources to improve generalization. We further present AIONER, a general-purpose BioNER tool based on cutting-edge deep learning and our AIO schema. We evaluate AIONER on 14 BioNER benchmark tasks and show that AIONER is effective, robust, and compares favorably to other state-of-the-art approaches such as multi-task learning. We further demonstrate the practical utility of AIONER in three independent tasks to recognize entity types not previously seen in training data, as well as the advantages of AIONER over existing methods for processing biomedical text at a large scale (e.g., the entire PubMed data).
translated by 谷歌翻译
事实证明,将先验知识纳入预训练的语言模型中对知识驱动的NLP任务有效,例如实体键入和关系提取。当前的培训程序通常通过使用知识掩盖,知识融合和知识更换将外部知识注入模型。但是,输入句子中包含的事实信息尚未完全开采,并且尚未严格检查注射的外部知识。结果,无法完全利用上下文信息,并将引入额外的噪音,或者注入的知识量受到限制。为了解决这些问题,我们提出了MLRIP,该MLRIP修改了Ernie-Baidu提出的知识掩盖策略,并引入了两阶段的实体替代策略。进行全面分析的广泛实验说明了MLRIP在军事知识驱动的NLP任务中基于BERT的模型的优势。
translated by 谷歌翻译
与伯特(Bert)等语言模型相比,已证明知识增强语言表示的预培训模型在知识基础构建任务(即〜关系提取)中更有效。这些知识增强的语言模型将知识纳入预训练中,以生成实体或关系的表示。但是,现有方法通常用单独的嵌入表示每个实体。结果,这些方法难以代表播出的实体和大量参数,在其基础代币模型之上(即〜变压器),必须使用,并且可以处理的实体数量为由于内存限制,实践限制。此外,现有模型仍然难以同时代表实体和关系。为了解决这些问题,我们提出了一个新的预培训模型,该模型分别从图书中学习实体和关系的表示形式,并分别在文本中跨越跨度。通过使用SPAN模块有效地编码跨度,我们的模型可以代表实体及其关系,但所需的参数比现有模型更少。我们通过从Wikipedia中提取的知识图对我们的模型进行了预训练,并在广泛的监督和无监督的信息提取任务上进行了测试。结果表明,我们的模型比基线学习对实体和关系的表现更好,而在监督的设置中,微调我们的模型始终优于罗伯塔,并在信息提取任务上取得了竞争成果。
translated by 谷歌翻译
关系提取(RE)是自然语言处理的基本任务。RE试图通过识别文本中的实体对之间的关系信息来将原始的,非结构化的文本转变为结构化知识。RE有许多用途,例如知识图完成,文本摘要,提问和搜索查询。RE方法的历史可以分为四个阶段:基于模式的RE,基于统计的RE,基于神经的RE和大型语言模型的RE。这项调查始于对RE的早期阶段的一些示例性作品的概述,突出了局限性和缺点,以使进度相关。接下来,我们回顾流行的基准测试,并严格检查用于评估RE性能的指标。然后,我们讨论遥远的监督,这是塑造现代RE方法发展的范式。最后,我们回顾了重点是降级和培训方法的最新工作。
translated by 谷歌翻译
作为人类认知的重要组成部分,造成效果关系频繁出现在文本中,从文本策划原因关系有助于建立预测任务的因果网络。现有的因果关系提取技术包括基于知识的,统计机器学习(ML)和基于深度学习的方法。每种方法都具有其优点和缺点。例如,基于知识的方法是可以理解的,但需要广泛的手动域知识并具有较差的跨域适用性。由于自然语言处理(NLP)工具包,统计机器学习方法更加自动化。但是,功能工程是劳动密集型的,工具包可能导致错误传播。在过去的几年里,由于其强大的代表学习能力和计算资源的快速增加,深入学习技术吸引了NLP研究人员的大量关注。它们的局限包括高计算成本和缺乏足够的注释培训数据。在本文中,我们对因果关系提取进行了综合调查。我们最初介绍了因果关系提取中存在的主要形式:显式的内部管制因果关系,隐含因果关系和间情态因果关系。接下来,我们列出了代理关系提取的基准数据集和建模评估方法。然后,我们介绍了三种技术的结构化概述了与他们的代表系统。最后,我们突出了潜在的方向存在现有的开放挑战。
translated by 谷歌翻译
我们研究了检查问题的事实,旨在识别给定索赔的真实性。具体而言,我们专注于事实提取和验证(发烧)及其伴随数据集的任务。该任务包括从维基百科检索相关文件(和句子)并验证文件中的信息是否支持或驳斥所索赔的索赔。此任务至关重要,可以是假新闻检测和医疗索赔验证等应用程序块。在本文中,我们以通过以结构化和全面的方式呈现文献来更好地了解任务的挑战。我们通过分析不同方法的技术视角并讨论发热数据集的性能结果,描述了所提出的方法,这是最熟悉的和正式结构化的数据集,就是事实提取和验证任务。我们还迄今为止迄今为止确定句子检索组件的有益损失函数的最大实验研究。我们的分析表明,采样负句对于提高性能并降低计算复杂性很重要。最后,我们描述了开放的问题和未来的挑战,我们激励了未来的任务研究。
translated by 谷歌翻译
我们介绍了一系列深度学习架构,用于际际关系提取,即参与者不一定在同一句中的关系。我们将这些架构应用于生物医学领域的重要用例:将生物背景分配给生化事件。在这项工作中,生物学背景被定义为观察到生物化学事件的生物系统的类型。神经架构编码并聚合相同候选上下文提到的多个出现,以确定特定事件是否提及的正确上下文。我们提出了两种广泛类型的架构:第一个类型聚合在发射分类之前关于事件的相同候选上下文的多个实例;第二种类型独立分类每个实例并使用结果投票给最终类,类似于集合方法。我们的实验表明,拟议的神经分类器具有竞争力,一些比以前的艺术传统机器学习方法的表现更好,而无需特征工程。我们的分析表明,与传统的机器学习分类器相比,神经方法特别提高精度,并且还表明了句子间关系的难度如何随着事件与上下文提升的距离而增加。
translated by 谷歌翻译
我们提出了文件的实体级关系联合模型。与其他方法形成鲜明对比 - 重点关注本地句子中的对,因此需要提及级别的注释 - 我们的模型在实体级别运行。为此,遵循多任务方法,它在Coreference分辨率上建立并通过多级别表示结合全局实体和本地提到信息来聚集相关信号。我们在积木数据集中实现最先进的关系提取结果,并报告了未来参考的第一个实体级端到端关系提取结果。最后,我们的实验结果表明,联合方法与特定于任务专用的学习相提并论,虽然由于共享参数和培训步骤而言更有效。
translated by 谷歌翻译
循证医学,医疗保健专业人员在做出决定时提到最佳证据的实践,形成现代医疗保健的基础。但是,它依赖于劳动密集型系统评论,其中域名专家必须从数千个出版物中汇总和提取信息,主要是随机对照试验(RCT)结果转化为证据表。本文通过对两个语言处理任务分解的问题来调查自动化证据表生成:\ texit {命名实体识别},它标识文本中的关键实体,例如药物名称,以及\ texit {关系提取},它会映射它们的关系将它们分成有序元组。我们专注于发布的RCT摘要的句子的自动制表,报告研究结果的结果。使用转移学习和基于变压器的语言表示的原则,开发了两个深度神经网络模型作为联合提取管道的一部分。为了培训和测试这些模型,开发了一种新的金标语,包括来自六种疾病区域的近600个结果句。这种方法表现出显着的优势,我们的系统在多种自然语言处理任务和疾病区域中表现良好,以及在训练期间不均匀地展示疾病域。此外,我们显示这些结果可以通过培训我们的模型仅在200个例句中培训。最终系统是一个概念证明,即证明表的产生可以是半自动的,代表全自动系统评论的一步。
translated by 谷歌翻译
Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).
translated by 谷歌翻译
从文本中提取空间关系是自然语言理解的一项基本任务,而先前的研究仅将其视为一项分类任务,由于信息差而忽略了那些具有无效角色的空间关系。为了解决上述问题,我们首先将空间关系提取视为一项生成任务,并为此任务提出了一种新型混合模型HMCGR。HMCGR包含一个生成和分类模型,而前者可以生成那些无效的关系,后者可以提取那些非无效关系以相互补充。此外,使用反射性评估机制,以进一步提高基于空间关系的反射性原理的准确性。SpaceEval的实验结果表明,HMCGR的表现明显优于SOTA基线。
translated by 谷歌翻译
在文档级事件提取(DEE)任务中,事件参数始终散布在句子(串行问题)中,并且多个事件可能存在于一个文档(多事件问题)中。在本文中,我们认为事件参数的关系信息对于解决上述两个问题具有重要意义,并提出了一个新的DEE框架,该框架可以对关系依赖关系进行建模,称为关系授权的文档级事件提取(REDEE)。更具体地说,该框架具有一种新颖的量身定制的变压器,称为关系增强的注意变形金刚(RAAT)。 RAAT可扩展以捕获多尺度和多启动参数关系。为了进一步利用关系信息,我们介绍了一个单独的事件关系预测任务,并采用多任务学习方法来显式增强事件提取性能。广泛的实验证明了该方法的有效性,该方法可以在两个公共数据集上实现最新性能。我们的代码可在https:// github上找到。 com/tencentyouturesearch/raat。
translated by 谷歌翻译
三重提取是自然语言处理和知识图构建信息提取的重要任务。在本文中,我们重新审视了序列生成的端到端三重提取任务。由于生成三重提取可能难以捕获长期依赖性并产生不忠的三元组,因此我们引入了一种新型模型,即与生成变压器的对比度三重提取。具体而言,我们为基于编码器的生成引入了一个共享的变压器模块。为了产生忠实的结果,我们提出了一个新颖的三胞胎对比训练对象。此外,我们引入了两种机制,以进一步提高模型性能(即,批处理动态注意力掩盖和三个方面的校准)。在三个数据集(即NYT,WebNLG和MIE)上进行的实验结果表明,我们的方法比基线的方法更好。
translated by 谷歌翻译
指定的实体识别任务是信息提取的核心任务之一。单词歧义和单词缩写是命名实体低识别率的重要原因。在本文中,我们提出了一种名为“实体识别模型WCL-BBCD”(与Bert-Bilstm-Crf-Dbpedia的单词对比学习),结合了对比度学习的概念。该模型首先在文本中训练句子对,计算句子对通过余弦的相似性中的单词对之间的相似性,以及通过相似性通过相似性来命名实体识别任务的BERT模型,以减轻单词歧义。然后,将微调的BERT模型与Bilstm-CRF模型相结合,以执行指定的实体识别任务。最后,将识别结果与先验知识(例如知识图)结合使用,以减轻单词缩写引起的低速问题的识别。实验结果表明,我们的模型在Conll-2003英语数据集和Ontonotes V5英语数据集上优于其他类似的模型方法。
translated by 谷歌翻译
目的:疾病知识图是一种连接,组织和访问有关疾病的不同信息的方式,对人工智能(AI)有很多好处。为了创建知识图,有必要以疾病概念之间的关系形式从多模式数据集中提取知识,并使概念和关系类型正常化。方法:我们介绍了Remap,这是一种多式模式提取和分类的方法。重新启动机器学习方法将部分不完整的知识图和医学语言数据集嵌入紧凑的潜在矢量空间中,然后将多模式嵌入以进行最佳疾病关系提取。结果:我们将重新映射方法应用于具有96,913个关系的疾病知识图和124万个句子的文本数据集。在由人类专家注释的数据集中,Remap通过将疾病知识图与文本信息融合,将基于文本的疾病关系提取提高了10.0%(准确性)和17.2%(F1分数)。此外,重建利用文本信息以推荐知识图中的新关系,优于基于图的方法,高于8.4%(准确性)和10.4%(F1得分)。结论:重塑是通过融合结构化知识和文本信息来提取和分类疾病关系的多模式方法。重映提供了灵活的神经体系结构,可轻松找到,访问和验证疾病概念之间的AI驱动关系。
translated by 谷歌翻译