动态需求预测对于城市交通系统有效运行和管理至关重要。在单模需求预测上进行了广泛的研究,忽略了不同运输模式的需求可以彼此相关。尽管最近的一些努力,现有的多式化需求预测方法通常不够灵活,以便在不同模式下具有不同的空间单元和异质时空相关性的多路复用网络。为了解决这些问题,本研究提出了一种多重峰需求预测的多关系时空图神经网络(ST-MRGNN)。具体地,跨模式的空间依赖性被多个内部和模态关系图编码。引入多关系图神经网络(MRGNN)以捕获跨模式异构空间依赖性,包括广义图卷积网络,以了解关系图中的消息传递机制和基于关注的聚合模块,以总结不同的关系。我们进一步将MRGNN与时间门控卷积层相结合,共同模拟异质时滞的相关性。广泛的实验是使用真实的地铁和来自纽约市的乘车数据集进行的实验,结果验证了我们提出的方法对模式的现有方法的提高性能。需求稀疏位置的改进特别大。进一步分析ST-MRGNN的注意机制还表明了对理解跨模式相互作用的良好解释性。
translated by 谷歌翻译
考虑到运输系统的多模式性质和潜在的跨模式相关性,通过从多模式数据中学习来提高需求预测准确性的趋势越来越大。这些多模式的预测模型可以提高准确性,但是当多模式数据集的不同部分由无法直接共享数据的不同机构拥有时,不太实际。尽管各个机构可能无法直接共享他们的数据,但他们可能会共享受其数据培训的预测模型,在此模型无法使用其数据集中确定确切信息。这项研究提出了一个无监督的知识适应需求预测框架,以通过基于其他模式的数据利用预训练的模型来预测目标模式的需求,这不需要源模式的直接数据共享。所提出的框架利用多种运输模式之间的潜在共享模式来改善预测性能,同时避免在不同机构之间直接共享数据。具体而言,首先根据源模式的数据学习了预训练的预测模型,该模式可以捕获和记住源旅行模式。然后,将目标数据集的需求数据编码为单个知识部分和共享知识部分,该部分将分别通过个人提取网络提取旅行模式和共享提取网络。无监督的知识适应策略用于通过制作预训练的网络和共享提取网络类似来形成共享功能,以进一步预测。我们的发现表明,通过将预先训练的模型共享到目标模式可以改善预测性能,而无需依赖直接数据共享。
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
最近的研究侧重于制定流量预测作为一种时空图形建模问题。它们通常在每个时间步骤构造静态空间图,然后将每个节点连接在相邻时间步骤之间以构造时空图形。在这样的图形中,不同时间步骤的不同节点之间的相关性未明确地反映,这可以限制图形神经网络的学习能力。同时,这些模型在不同时间步骤中使用相同的邻接矩阵时,忽略节点之间的动态时空相关性。为了克服这些限制,我们提出了一种时空关节图卷积网络(StJGCN),用于交通预测在公路网络上的几个时间上限。具体地,我们在任何两个时间步长之间构造预定的和自适应时空关节图(STJG),这代表了全面和动态的时空相关性。我们进一步设计了STJG上的扩张因果时空关节图卷积层,以捕获与多个范围不同的视角的时空依赖关系。提出了一种多范围注意机制来聚合不同范围的信息。四个公共交通数据集的实验表明,STJGCN是计算的高效和优于11个最先进的基线方法。
translated by 谷歌翻译
交通速度预测是运输系统中的核心问题之一。为了进行更准确的预测,最近的研究不仅开始使用时间速度模式,还开始使用图形卷积网络上的道路网络上的空间信息。即使由于其非欧亚人和方向性特征,道路网络非常复杂,但以前的方法主要集中于仅使用距离对空间依赖性进行建模。在本文中,我们确定了两个基本的预测中的基本空间依赖性,除了距离,方向和位置关系,以将基本的图形元素设计为基本构建块。我们建议使用构建块,建议DDP-GCN(距离,方向和位置关系图卷积网络)将三个空间关系纳入深神经网络。我们使用两个大型现实世界数据集评估了提出的模型,并在高度复杂的城市网络中找到了长期预测的积极改进。通勤时间的改进可能会更大,但也可以限制短期预测。
translated by 谷歌翻译
揭开多个机场之间的延迟传播机制的神秘面纱对于精确且可解释的延迟预测至关重要,这对于所有航空业利益相关者来说至关重要。主要挑战在于有效利用与延迟传播有关的时空依赖性和外源因素。但是,以前的作品仅考虑有限的时空模式,其因素很少。为了促进延迟预测的更全面的传播建模,我们提出了时空传播网络(STPN),这是一种时空可分开的图形卷积网络,在时空依赖性捕获中是新颖的。从空间关系建模的方面,我们提出了一个多画卷积模型,考虑地理位置和航空公司计划。从时间依赖性捕获的方面,我们提出了一种多头的自我发起的机制,可以端对端学习,并明确地推定延迟时间序列的多种时间依赖性。我们表明,关节空间和时间学习模型产生了Kronecker产品的总和,这是由于时空依赖性归因于几个空间和时间邻接矩阵的总和。通过这种方式,STPN允许对空间和时间因素进行串扰,以建模延迟传播。此外,将挤压和激发模块添加到STPN的每一层,以增强有意义的时空特征。为此,我们在大规模机场网络中将STPN应用于多步进和出发延迟预测。为了验证我们的模型的有效性,我们尝试了两个现实世界中的延迟数据集,包括美国和中国航班延迟;我们表明,STPN优于最先进的方法。此外,STPN产生的反事实表明,它学习了可解释的延迟传播模式。
translated by 谷歌翻译
本文旨在统一非欧几里得空间中的空间依赖性和时间依赖性,同时捕获流量数据的内部空间依赖性。对于具有拓扑结构的时空属性实体,时空是连续的和统一的,而每个节点的当前状态都受到每个邻居的变异时期的邻居的过去状态的影响。大多数用于流量预测研究的空间依赖性和时间相关性的空间神经网络在处理中分别损害了时空完整性,而忽略了邻居节点的时间依赖期可以延迟和动态的事实。为了建模这种实际条件,我们提出了一种新型的空间 - 周期性图神经网络,将空间和时间视为不可分割的整体,以挖掘时空图,同时通过消息传播机制利用每个节点的发展时空依赖性。进行消融和参数研究的实验已经验证了拟议的遍及术的有效性,并且可以从https://github.com/nnzhan/traversenet中找到详细的实现。
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
天气预报是一项有吸引力的挑战性任务,因为它对人类生活和大气运动的复杂性的影响。在大量历史观察到的时间序列数据的支持下,该任务适用于数据驱动的方法,尤其是深层神经网络。最近,基于图神经网络(GNN)方法在时空预测方面取得了出色的性能。但是,基于规范的GNNS方法仅分别对每个站的气象变量的局部图或整个车站的全局图进行建模,从而缺乏不同站点的气象变量之间的信息相互作用。在本文中,我们提出了一种新型的层次时空图形神经网络(Histgnn),以模拟多个站点气象变量之间的跨区域时空相关性。自适应图学习层和空间图卷积用于构建自学习图,并研究可变级别和站点级别图的节点之间的隐藏依赖性。为了捕获时间模式,扩张的成立为GATE时间卷积的主干旨在对长而各种气象趋势进行建模。此外,提出了动态的交互学习来构建在层次图中传递的双向信息。三个现实世界中的气象数据集的实验结果表明,史基元超过7个基准的卓越性能,并且将误差降低了4.2%至11.6%,尤其是与最先进的天气预测方法相比。
translated by 谷歌翻译
由于运输网络中复杂的时空依赖性,准确的交通预测是智能运输系统中一项艰巨的任务。许多现有的作品利用复杂的时间建模方法与图形卷积网络(GCN)合并,以捕获短期和长期时空依赖性。但是,这些具有复杂设计的分离模块可以限制时空表示学习的有效性和效率。此外,大多数以前的作品都采用固定的图形构造方法来表征全局时空关系,这限制了模型在不同时间段甚至不同的数据方案中的学习能力。为了克服这些局限性,我们提出了一个自动扩张的时空同步图网络,称为Auto-DSTSGN用于流量预测。具体而言,我们设计了自动扩张的时空同步图(自动-DSTSG)模块,以捕获短期和长期时空相关性,通过在增加顺序的扩张因子中堆叠更深的层。此外,我们提出了一种图形结构搜索方法,以自动构建可以适应不同数据方案的时空同步图。在四个现实世界数据集上进行的广泛实验表明,与最先进的方法相比,我们的模型可以取得约10%的改善。源代码可在https://github.com/jinguangyin/auto-dstsgn上找到。
translated by 谷歌翻译
使用图形卷积网络(GCN)构建时空网络已成为预测交通信号的最流行方法之一。但是,当使用GCN进行交通速度预测时,常规方法通常将传感器之间的关系作为均匀图,并使用传感器累积的数据来学习邻接矩阵。但是,传感器之间的空间相关性并未指定为一个,而是从各种观点方面定义不同。为此,我们旨在研究流量信号数据中固有的异质特征,以以各种方式学习传感器之间的隐藏关系。具体而言,我们设计了一种方法来通过将传感器之间的空间关系分为静态和动态模块来构造每个模块的异质图。我们提出了一个基于网络分散注意力的基于异质性 - 感知图形卷积网络(HAGCN)方法,该方法通过在异质图中考虑每个通道的重要性来汇总相邻节点的隐藏状态。实际流量数据集的实验结果验证了所提出的方法的有效性,比现有模型取得了6.35%的改善,并实现了最先进的预测性能。
translated by 谷歌翻译
Accurate short-term traffic prediction plays a pivotal role in various smart mobility operation and management systems. Currently, most of the state-of-the-art prediction models are based on graph neural networks (GNNs), and the required training samples are proportional to the size of the traffic network. In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense. It is still an open question to develop traffic prediction models with a small size of training data on large-scale networks. We notice that the traffic states of a node for the near future only depend on the traffic states of its localized neighborhoods, which can be represented using the graph relational inductive biases. In view of this, this paper develops a graph network (GN)-based deep learning model LocaleGN that depicts the traffic dynamics using localized data aggregating and updating functions, as well as the node-wise recurrent neural networks. LocaleGN is a light-weighted model designed for training on few samples without over-fitting, and hence it can solve the problem of few-sample traffic prediction. The proposed model is examined on predicting both traffic speed and flow with six datasets, and the experimental results demonstrate that LocaleGN outperforms existing state-of-the-art baseline models. It is also demonstrated that the learned knowledge from LocaleGN can be transferred across cities. The research outcomes can help to develop light-weighted traffic prediction systems, especially for cities lacking historically archived traffic data.
translated by 谷歌翻译
Reliable forecasting of traffic flow requires efficient modeling of traffic data. Different correlations and influences arise in a dynamic traffic network, making modeling a complicated task. Existing literature has proposed many different methods to capture the complex underlying spatial-temporal relations of traffic networks. However, methods still struggle to capture different local and global dependencies of long-range nature. Also, as more and more sophisticated methods are being proposed, models are increasingly becoming memory-heavy and, thus, unsuitable for low-powered devices. In this paper, we focus on solving these problems by proposing a novel deep learning framework - STLGRU. Specifically, our proposed STLGRU can effectively capture both local and global spatial-temporal relations of a traffic network using memory-augmented attention and gating mechanism. Instead of employing separate temporal and spatial components, we show that our memory module and gated unit can learn the spatial-temporal dependencies successfully, allowing for reduced memory usage with fewer parameters. We extensively experiment on several real-world traffic prediction datasets to show that our model performs better than existing methods while the memory footprint remains lower. Code is available at \url{https://github.com/Kishor-Bhaumik/STLGRU}.
translated by 谷歌翻译
图表上的交通流量预测在许多字段(例如运输系统和计算机网络)中具有现实世界应用。由于复杂的时空相关性和非线性交通模式,交通预测可能是高度挑战的。现有的作品主要是通过分别考虑空间相关性和时间相关性来模拟此类时空依赖性的模型,并且无法对直接的时空相关性进行建模。受到图形域中变形金刚最近成功的启发,在本文中,我们建议使用局部多头自我攻击直接建模时空图上的跨空间相关性。为了降低时间的复杂性,我们将注意力接收场设置为空间相邻的节点,还引入了自适应图以捕获隐藏的空间范围依赖性。基于这些注意机制,我们提出了一种新型的自适应图形时空变压器网络(ASTTN),该网络堆叠了多个时空注意层以在输入图上应用自我注意力,然后是线性层进行预测。公共交通网络数据集,Metr-La PEMS-Bay,PEMSD4和PEMSD7的实验结果证明了我们模型的出色性能。
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
准确预测短期OD矩阵(即,从各种来源到目的地的乘客流量的分布)是地铁系统中的一个重要任务。由于许多影响因素的不断变化的性质和实时延迟数据收集问题,这是强大的挑战性。最近,已经提出了一些基于学习的基于学习的模型,以便在乘车和高速公路中进行OD矩阵预测。然而,由于其不同的先验知识和上下文设置,这些模型不能充分捕获地铁网络中的站点之间的复杂时空相关性。在本文中,我们提出了一个混合框架多视图Trgru来解决OD Metro Matrix预测。特别是,它使用三个模块来模拟三个流动变化模式:最近的趋势,日常趋势,每周趋势。在每个模块中,基于每个站的嵌入的多视图表示被构造并馈送到基于变压器的门控复发结构,以通过全球自我注意机制捕获不同站的OD流的动态空间依赖性。在三种大型现实世界地铁数据集上进行了广泛的实验,证明了我们的多视图Trgru在其他竞争对手的优越性。
translated by 谷歌翻译
Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system. Existing approaches mostly capture the spatial dependency on a fixed graph structure, assuming that the underlying relation between entities is pre-determined. However, the explicit graph structure (relation) does not necessarily reflect the true dependency and genuine relation may be missing due to the incomplete connections in the data. Furthermore, existing methods are ineffective to capture the temporal trends as the RNNs or CNNs employed in these methods cannot capture long-range temporal sequences. To overcome these limitations, we propose in this paper a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling. By developing a novel adaptive dependency matrix and learn it through node embedding, our model can precisely capture the hidden spatial dependency in the data. With a stacked dilated 1D convolution component whose receptive field grows exponentially as the number of layers increases, Graph WaveNet is able to handle very long sequences. These two components are integrated seamlessly in a unified framework and the whole framework is learned in an end-to-end manner. Experimental results on two public traffic network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of our algorithm.
translated by 谷歌翻译
多变量时间序列(MTS)预测在许多智能应用中引起了很多关注。它不是一个琐碎的任务,因为我们需要考虑一个可变的依赖关系和可变间依赖关系。但是,现有的作品是针对特定场景设计的,需要很多域知识和专家努力,这难以在不同的场景之间传输。在本文中,我们提出了一种尺度意识的神经结构,用于MTS预测(SNAS4MTF)的搜索框架。多尺度分解模块将原始时间序列转换为多尺度子系列,可以保留多尺度的时间模式。自适应图形学习模块在没有任何先前知识的情况下,在不同的时间尺度下递送不同的变量间依赖关系。对于MTS预测,搜索空间旨在在每次尺度上捕获可变的可变依赖性和可变间依赖关系。在端到端框架中共同学习多尺度分解,自适应图学习和神经架构搜索模块。两个现实世界数据集的大量实验表明,与最先进的方法相比,SNAS4MTF实现了有希望的性能。
translated by 谷歌翻译
最近,深度学习方法在交通预测方面取得了长足的进步,但它们的性能取决于大量的历史数据。实际上,我们可能会面临数据稀缺问题。在这种情况下,深度学习模型无法获得令人满意的性能。转移学习是解决数据稀缺问题的一种有前途的方法。但是,流量预测中现有的转移学习方法主要基于常规网格数据,这不适用于流量网络中固有的图形数据。此外,现有的基于图的模型只能在道路网络中捕获共享的流量模式,以及如何学习节点特定模式也是一个挑战。在本文中,我们提出了一种新颖的传输学习方法来解决流量预测,几乎可以将知识从数据富的源域转移到数据范围的目标域。首先,提出了一个空间图形神经网络,该网络可以捕获不同道路网络的节点特异性时空交通模式。然后,为了提高转移的鲁棒性,我们设计了一种基于模式的转移策略,我们利用基于聚类的机制来提炼源域中的常见时空模式,并使用这些知识进一步提高了预测性能目标域。现实世界数据集的实验验证了我们方法的有效性。
translated by 谷歌翻译
交通流量预测是智能运输系统的重要组成部分,从而受到了研究人员的关注。但是,交通道路之间的复杂空间和时间依赖性使交通流量的预测具有挑战性。现有方法通常是基于图形神经网络,使用交通网络的预定义空间邻接图来建模空间依赖性,而忽略了道路节点之间关系的动态相关性。此外,他们通常使用独立的时空组件来捕获时空依赖性,并且不会有效地对全局时空依赖性进行建模。本文提出了一个新的时空因果图形注意网络(STCGAT),以解决上述挑战。在STCGAT中,我们使用一种节点嵌入方法,可以在每个时间步骤中自适应生成空间邻接子图,而无需先验地理知识和对不同时间步骤动态生成图的拓扑的精细颗粒建模。同时,我们提出了一个有效的因果时间相关成分,其中包含节点自适应学习,图形卷积以及局部和全局因果关系卷积模块,以共同学习局部和全局时空依赖性。在四个真正的大型流量数据集上进行的广泛实验表明,我们的模型始终优于所有基线模型。
translated by 谷歌翻译