随着物联网设备的扩散,研究人员在机器学习的帮助下开发了各种IOT设备识别方法。尽管如此,这些识别方法的安全性主要取决于收集的培训数据。在这项研究中,我们提出了一种名为IOTGan的新型攻击策略来操纵IoT设备的流量,使得它可以避免基于机器学习的IOT设备识别。在IOTGAN的发展中,我们有两个主要的技术挑战:(i)如何在黑匣子环境中获得歧视模型,并如何通过操纵模型将扰动添加到物联网交通中,从而逃避识别不影响物联网设备的功能。为了解决这些挑战,基于神经网络的替代模型用于将目标模型放在黑盒设置中,它作为IOTGAN中的歧视模型。培训操纵模型,以将对抗性扰动添加到物联网设备的流量中以逃避替代模型。实验结果表明,IOTAN可以成功实现攻击目标。我们还开发了高效的对策,以保护基于机器的机器学习的IOT设备识别由IOTGAN破坏。
translated by 谷歌翻译
The usage of technologically advanced devices has seen a boom in many domains, including education, automation, and healthcare; with most of the services requiring Internet connectivity. To secure a network, device identification plays key role. In this paper, a device fingerprinting (DFP) model, which is able to distinguish between Internet of Things (IoT) and non-IoT devices, as well as uniquely identify individual devices, has been proposed. Four statistical features have been extracted from the consecutive five device-originated packets, to generate individual device fingerprints. The method has been evaluated using the Random Forest (RF) classifier and different datasets. Experimental results have shown that the proposed method achieves up to 99.8% accuracy in distinguishing between IoT and non-IoT devices and over 97.6% in classifying individual devices. These signify that the proposed method is useful in assisting operators in making their networks more secure and robust to security breaches and unauthorized access.
translated by 谷歌翻译
第五代(5G)网络和超越设想巨大的东西互联网(物联网)推出,以支持延长现实(XR),增强/虚拟现实(AR / VR),工业自动化,自主驾驶和智能所有带来的破坏性应用一起占用射频(RF)频谱的大规模和多样化的IOT设备。随着频谱嘎嘎和吞吐量挑战,这种大规模的无线设备暴露了前所未有的威胁表面。 RF指纹识别是预约的作为候选技术,可以与加密和零信任安全措施相结合,以确保无线网络中的数据隐私,机密性和完整性。在未来的通信网络中,在这项工作中,在未来的通信网络中的相关性,我们对RF指纹识别方法进行了全面的调查,从传统观点到最近的基于深度学习(DL)的算法。现有的调查大多专注于无线指纹方法的受限制呈现,然而,许多方面仍然是不可能的。然而,在这项工作中,我们通过解决信号智能(SIGINT),应用程序,相关DL算法,RF指纹技术的系统文献综述来缓解这一点,跨越过去二十年的RF指纹技术的系统文献综述,对数据集和潜在研究途径的讨论 - 必须以百科全书的方式阐明读者的必要条件。
translated by 谷歌翻译
边缘计算是一个将数据处理服务转移到生成数据的网络边缘的范式。尽管这样的架构提供了更快的处理和响应,但除其他好处外,它还提出了必须解决的关键安全问题和挑战。本文讨论了从硬件层到系统层的边缘网络体系结构出现的安全威胁和漏洞。我们进一步讨论了此类网络中的隐私和法规合规性挑战。最后,我们认为需要一种整体方法来分析边缘网络安全姿势,该姿势必须考虑每一层的知识。
translated by 谷歌翻译
Industrial Internet of Things (IoT) systems increasingly rely on wireless communication standards. In a common industrial scenario, indoor wireless IoT devices communicate with access points to deliver data collected from industrial sensors, robots and factory machines. Due to static or quasi-static locations of IoT devices and access points, historical observations of IoT device channel conditions provide a possibility to precisely identify the device without observing its traditional identifiers (e.g., MAC or IP address). Such device identification methods based on wireless fingerprinting gained increased attention lately as an additional cyber-security mechanism for critical IoT infrastructures. In this paper, we perform a systematic study of a large class of machine learning algorithms for device identification using wireless fingerprints for the most popular cellular and Wi-Fi IoT technologies. We design, implement, deploy, collect relevant data sets, train and test a multitude of machine learning algorithms, as a part of the complete end-to-end solution design for device identification via wireless fingerprinting. The proposed solution is currently being deployed in a real-world industrial IoT environment as part of H2020 project COLLABS.
translated by 谷歌翻译
互联网连接系统的指数增长产生了许多挑战,例如频谱短缺问题,需要有效的频谱共享(SS)解决方案。复杂和动态的SS系统可以接触不同的潜在安全性和隐私问题,需要保护机制是自适应,可靠和可扩展的。基于机器学习(ML)的方法经常提议解决这些问题。在本文中,我们对最近的基于ML的SS方法,最关键的安全问题和相应的防御机制提供了全面的调查。特别是,我们详细说明了用于提高SS通信系统的性能的最先进的方法,包括基于ML基于ML的基于的数据库辅助SS网络,ML基于基于的数据库辅助SS网络,包括基于ML的数据库辅助的SS网络,基于ML的LTE-U网络,基于ML的环境反向散射网络和其他基于ML的SS解决方案。我们还从物理层和基于ML算法的相应防御策略的安全问题,包括主要用户仿真(PUE)攻击,频谱感测数据伪造(SSDF)攻击,干扰攻击,窃听攻击和隐私问题。最后,还给出了对ML基于ML的开放挑战的广泛讨论。这种全面的审查旨在为探索新出现的ML的潜力提供越来越复杂的SS及其安全问题,提供基础和促进未来的研究。
translated by 谷歌翻译
医学事物互联网(IOMT)允许使用传感器收集生理数据,然后将其传输到远程服务器,这使医生和卫生专业人员可以连续,永久地分析这些数据,并在早期阶段检测疾病。但是,使用无线通信传输数据将其暴露于网络攻击中,并且该数据的敏感和私人性质可能代表了攻击者的主要兴趣。在存储和计算能力有限的设备上使用传统的安全方法无效。另一方面,使用机器学习进行入侵检测可以对IOMT系统的要求提供适应性的安全响应。在这种情况下,对基于机器学习(ML)的入侵检测系统如何解决IOMT系统中的安全性和隐私问题的全面调查。为此,提供了IOMT的通用三层体系结构以及IOMT系统的安全要求。然后,出现了可能影响IOMT安全性的各种威胁,并确定基于ML的每个解决方案中使用的优势,缺点,方法和数据集。最后,讨论了在IOMT的每一层中应用ML的一些挑战和局限性,这些挑战和局限性可以用作未来的研究方向。
translated by 谷歌翻译
设备识别是保护IoT设备网络的一种方法,该设备随后可以从网络中隔离被识别为可疑的设备。在这项研究中,我们提出了一种基于机器学习的方法IotDevid,该方法通过其网络数据包的特征来识别设备。通过使用严格的功能分析和选择过程,我们的研究为建模设备行为提供了可推广和现实的方法,从而在两个公共数据集中实现了高预测精度。该模型的基础功能集显示出比用于设备识别的现有功能集更具预测性,并且显示出在功能选择过程中概括为看不见的数据。与大多数现有的物联网设备识别方法不同,IotDevid能够使用非IP和低能协议来检测设备。
translated by 谷歌翻译
由于它们在各个域中的大量成功,深入的学习技术越来越多地用于设计网络入侵检测解决方案,该解决方案检测和减轻具有高精度检测速率和最小特征工程的未知和已知的攻击。但是,已经发现,深度学习模型容易受到可以误导模型的数据实例,以使所谓的分类决策不正确(对抗示例)。此类漏洞允许攻击者通过向恶意流量添加小的狡猾扰动来逃避检测并扰乱系统的关键功能。在计算机视觉域中广泛研究了深度对抗学习的问题;但是,它仍然是网络安全应用中的开放研究领域。因此,本调查探讨了在网络入侵检测领域采用对抗机器学习的不同方面的研究,以便为潜在解决方案提供方向。首先,调查研究基于它们对产生对抗性实例的贡献来分类,评估ML的NID对逆势示例的鲁棒性,并捍卫这些模型的这种攻击。其次,我们突出了调查研究中确定的特征。此外,我们讨论了现有的通用对抗攻击对NIDS领域的适用性,启动拟议攻击在现实世界方案中的可行性以及现有缓解解决方案的局限性。
translated by 谷歌翻译
The Internet of Things (IoT) is a system that connects physical computing devices, sensors, software, and other technologies. Data can be collected, transferred, and exchanged with other devices over the network without requiring human interactions. One challenge the development of IoT faces is the existence of anomaly data in the network. Therefore, research on anomaly detection in the IoT environment has become popular and necessary in recent years. This survey provides an overview to understand the current progress of the different anomaly detection algorithms and how they can be applied in the context of the Internet of Things. In this survey, we categorize the widely used anomaly detection machine learning and deep learning techniques in IoT into three types: clustering-based, classification-based, and deep learning based. For each category, we introduce some state-of-the-art anomaly detection methods and evaluate the advantages and limitations of each technique.
translated by 谷歌翻译
通过无线网络互联设备数量和数据通信数量的显着增加引起了各种威胁,风险和安全问题。物联网(IoT)应用程序几乎部署在日常生活中的几乎所有领域,包括敏感环境。边缘计算范例通过在数据源附近移动计算处理来补充了IOT应用程序。在各种安全模型中,基于机器学习(ML)的入侵检测是最可想到的防御机制,用于打击已启用边缘的物联网中的异常行为。 ML算法用于将网络流量分类为正常和恶意攻击。入侵检测是网络安全领域的具有挑战性问题之一。研究界提出了许多入侵检测系统。然而,选择合适的算法涉及在启用边缘的物联网网络中提供安全性的挑战存在。在本文中,已经执行了传统机器学习分类算法的比较分析,以在Puparm工具上使用Jupyter对NSL-KDD数据集上的网络流量进行分类。可以观察到,多层感知(MLP)在输入和输出之间具有依赖性,并且更多地依赖于用于入侵检测的网络配置。因此,MLP可以更适合于基于边缘的物联网网络,其具有更好的培训时间为1.2秒,测试精度为79%。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
随着物联网设备越来越多地集成到重要网络,对安全互联网(IoT)设备的需求正在增长。许多系统依靠这些设备保持可用并提供可靠的服务。拒绝对物联网设备的服务攻击是一个真正的威胁,因为这些低功率设备非常容易受到拒绝服务攻击。启用机器学习的网络入侵检测系统可以有效地识别新威胁,但是它们需要大量数据才能正常工作。有许多网络流量数据集,但很少有人关注物联网网络流量。在物联网网络数据集中,缺乏coap拒绝服务数据。我们提出了一个涵盖此差距的新型数据集。我们通过从真正的COAP拒绝服务攻击中收集网络流量来开发新数据集,并在多个不同的机器学习分类器上比较数据。我们证明数据集对许多分类器有效。
translated by 谷歌翻译
互联网连接系统的规模大大增加,这些系统比以往任何时候都更接触到网络攻击。网络攻击的复杂性和动态需要保护机制响应,自适应和可扩展。机器学习,或更具体地说,深度增强学习(DRL),方法已经广泛提出以解决这些问题。通过将深入学习纳入传统的RL,DRL能够解决复杂,动态,特别是高维的网络防御问题。本文提出了对为网络安全开发的DRL方法进行了调查。我们触及不同的重要方面,包括基于DRL的网络 - 物理系统的安全方法,自主入侵检测技术和基于多元的DRL的游戏理论模拟,用于防范策略对网络攻击。还给出了对基于DRL的网络安全的广泛讨论和未来的研究方向。我们预计这一全面审查提供了基础,并促进了未来的研究,探讨了越来越复杂的网络安全问题。
translated by 谷歌翻译
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
translated by 谷歌翻译
In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale of billions. However, some new cybersecurity issues have appeared together with this development. Some of these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning techniques due to the advances in this field and the increase in processing capabilities. In contrast, attackers do not stay stalled and have developed adversarial attacks focused on context modification and ML/DL evaluation evasion applied to IoT device identification solutions. This work explores the performance of hardware behavior-based individual device identification, how it is affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for individual device identification. Then, previous techniques have been compared with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the identification. However, some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training and model distillation defense techniques are selected to improve the model resilience to evasion attacks, without degrading its performance.
translated by 谷歌翻译
越来越多的东西数量(物联网)设备使得必须了解他们在网络安全方面所面临的真实威胁。虽然蜜罐已经历史上用作诱饵设备,以帮助研究人员/组织更好地了解网络的威胁动态及其影响,因此由于各种设备及其物理连接,IOT设备为此目的构成了独特的挑战。在这项工作中,通过在低互动蜜罐生态系统中观察真实世界攻击者的行为,我们(1)我们(1)介绍了创建多阶段多方面蜜罐生态系统的新方法,逐渐增加了蜜罐的互动的复杂性有了对手,(2)为相机设计和开发了一个低交互蜜罐,允许研究人员对攻击者的目标进行更深入的了解,并且(3)设计了一种创新的数据分析方法来识别对手的目标。我们的蜜罐已经活跃三年了。我们能够在每个阶段收集越来越复杂的攻击数据。此外,我们的数据分析指向蜜罐中捕获的绝大多数攻击活动共享显着的相似性,并且可以集聚集和分组,以更好地了解野外物联网攻击的目标,模式和趋势。
translated by 谷歌翻译
数据集对于将AI算法应用于网络物理系统(CPS)安全性至关重要。由于实际CPS数据集的稀缺性,研究人员选择使用真实或虚拟化测试台生成自己的数据集。但是,与其他AI域不同,CPS是一个复杂的系统,具有许多确定其行为的接口。仅包含传感器测量和网络流量集合的数据集可能不足以开发弹性的AI防御或进攻剂。在本文中,我们研究了捕获系统行为和交互所需的CPS安全数据集的\ emph {Elements},并提出了一个数据集体系结构,该架构有可能增强AI算法在保护网络物理系统方面的性能。该框架包括数据集元素,攻击表示和所需的数据集功能。我们将现有数据集与建议的体系结构进行比较,以识别当前局限性,并使用TestBeds讨论CPS数据集生成的未来。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
越来越多的工作已经认识到利用机器学习(ML)进步的重要性,以满足提取访问控制属性,策略挖掘,策略验证,访问决策等有效自动化的需求。在这项工作中,我们调查和总结了各种ML解决不同访问控制问题的方法。我们提出了ML模型在访问控制域中应用的新分类学。我们重点介绍当前的局限性和公开挑战,例如缺乏公共现实世界数据集,基于ML的访问控制系统的管理,了解黑盒ML模型的决策等,并列举未来的研究方向。
translated by 谷歌翻译