本章的主要范围是作为面部介绍攻击检测的介绍,包括过去几年的关键资源和领域的进步。下一页呈现了面部识别系统可以面对的不同演示攻击,其中攻击者向传感器提供给传感器,主要是相机,呈现攻击仪器(PAI),这通常是照片,视频或掩码,试图冒充真正的用户。首先,我们介绍了面部识别的现状,部署水平及其挑战。此外,我们介绍了面部识别系统可能暴露的漏洞和可能的攻击,表明呈现攻击检测方法的高度重要性。我们审核不同类型的演示攻击方法,从更简单到更复杂,在哪个情况下它们可能是有效的。然后,我们总结了最受欢迎的演示文稿攻击检测方法来处理这些攻击。最后,我们介绍了研究界使用的公共数据集,以探索面部生物识别性的脆弱性,以呈现攻击,并对已知的PAI制定有效的对策。
translated by 谷歌翻译
研究的目的:在生物社区,可见人类的特征是普遍和可行的验证和识别移动设备上。然而,驾驶员能够通过创造假人和人工生物识别来欺骗系统来欺骗这些特征。可见的生物识别系统遭遇了呈现攻击的高安全性风险。方法:在此期间,基于挑战的方法,特别是视线跟踪和瞳孔动态似乎比别人接触生物系统更加安全的方法。我们审查了探索凝视跟踪和瞳孔动态活力检测的现有工作。主要结果:本研究分析了视线跟踪和瞳孔动态演示攻击的各个方面,如国家的最先进的活跃度检测算法,各种文物,公共数据库的可访问性和标准化的在这方面的总结。此外,我们讨论了未来的工作和开放挑战,以基于基于挑战的系统创造安全的活力检测。
translated by 谷歌翻译
已经广泛地研究了使用虹膜和围眼区域作为生物特征,主要是由于虹膜特征的奇异性以及当图像分辨率不足以提取虹膜信息时的奇异区域的使用。除了提供有关个人身份的信息外,还可以探索从这些特征提取的功能,以获得其他信息,例如个人的性别,药物使用的影响,隐形眼镜的使用,欺骗等。这项工作提出了对为眼部识别创建的数据库的调查,详细说明其协议以及如何获取其图像。我们还描述并讨论了最受欢迎的眼镜识别比赛(比赛),突出了所提交的算法,只使用Iris特征和融合虹膜和周边地区信息实现了最佳结果。最后,我们描述了一些相关工程,将深度学习技术应用于眼镜识别,并指出了新的挑战和未来方向。考虑到有大量的眼部数据库,并且每个人通常都设计用于特定问题,我们认为这项调查可以广泛概述眼部生物识别学中的挑战。
translated by 谷歌翻译
智能手机已经使用基于生物识别的验证系统,以在高度敏感的应用中提供安全性。视听生物识别技术因其可用性而受欢迎,并且由于其多式化性质,欺骗性将具有挑战性。在这项工作中,我们介绍了一个在五个不同最近智能手机中捕获的视听智能手机数据集。考虑到不同的现实情景,这个新数据集包含在三个不同的会话中捕获的103个科目。在该数据集中获取三种不同的语言,以包括扬声器识别系统的语言依赖性问题。这些数据集的这些独特的特征将为实施新的艺术技术的单向或视听扬声器识别系统提供途径。我们还报告了DataSet上的基准标记的生物识别系统的性能。生物识别算法的鲁棒性朝向具有广泛实验的重播和合成信号等信号噪声,设备,语言和呈现攻击等多种依赖性。获得的结果提出了许多关于智能手机中最先进的生物识别方法的泛化特性的担忧。
translated by 谷歌翻译
生物识别技术在过去十年中越来越多地部署,比传统的个人认可方法提供更大的安全性和便利性。虽然生物识别信号的质量严重影响生物识别系统的性能,但在评估质量的先验研究中有限。质量是安全的关键问题,特别是在涉及监视摄像机,取证,便携式设备或通过互联网远程访问的不利情景。本文分析了对生物识别质量产生负面影响的因素,如何克服它们,以及如何将质量措施纳入生物识别系统。在这些问题中对本领域的审查提供了一种对生物识别质量挑战的整体框架。
translated by 谷歌翻译
提出了一种使用基于质量相关特征的新颖的指纹参数化的新的基于软件的活性检测方法。该系统在高度挑战的数据库上测试,该数据库包括超过10,500个实际和假图像,其中包含不同技术的五个传感器,并在材料和程序中覆盖各种直接攻击情景,然后遵循生成胶状手指。所提出的解决方案证明对多场景数据集具有强大,并呈现90%正确分类的样本的总速率。此外,所呈现的活性检测方法具有上述从手指中仅需要一个图像的先前研究的技术的额外优点,以决定它是真实还是假的。最后一个特征提供了具有非常有价值的功能的方法,因为它使其更不具有侵入性,更多的用户友好,更快,并降低其实现成本。
translated by 谷歌翻译
虹膜呈现攻击检测(iPad)对于确保个人身份至关重要是广泛使用的虹膜识别系统。然而,由于在不受约束的环境中捕获和攻击样本之间的高视觉相关性,现有的iPad算法不会概括到看不见和跨域场景。虹膜眼镜图像复杂纹理和形态模式的这些相似之处进一步促进了性能降解。为了减轻这些缺点,本文提出了DFCanet:密集特征校准和注意力引导网络,其校准了与全球位于全球位于局部涂抹的虹膜模式。从特征校准卷积和剩余学习中振衡优势,DFCanet会生成特定于域的IRIS特征表示。由于校准特征映射中的一些通道包含更突出的信息,因此我们通过通道注意机制利用频道跨越渠道的鉴别特征学习。为了加强挑战我们所提出的模型,我们使DFCanet通过非统一和非归一化的眼虹膜图像运行。在挑战性跨域和域内场景中进行的广泛实验突出了一致的表现优势。与最先进的方法相比,DFCanet分别实现了基准IIITD CLI,IIIT CSD和NDCLD13数据库的性能显着提升。此外,已经引入了一种新的基于增量学习的方法,以克服解散的虹膜数据特征和数据稀缺。本文还追求了在各种跨域协议下进行评估的攻击类别下进行软镜头的具有挑战性的情景。该代码将公开可用。
translated by 谷歌翻译
通常,基于生物谱系的控制系统可能不依赖于各个预期行为或合作适当运行。相反,这种系统应该了解未经授权的访问尝试的恶意程序。文献中提供的一些作品建议通过步态识别方法来解决问题。这些方法旨在通过内在的可察觉功能来识别人类,尽管穿着衣服或配件。虽然该问题表示相对长时间的挑战,但是为处理问题的大多数技术存在与特征提取和低分类率相关的几个缺点,以及其他问题。然而,最近的深度学习方法是一种强大的一组工具,可以处理几乎任何图像和计算机视觉相关问题,为步态识别提供最重要的结果。因此,这项工作提供了通过步态认可的关于生物识别检测的最近作品的调查汇编,重点是深入学习方法,强调他们的益处,暴露出弱点。此外,它还呈现用于解决相关约束的数据集,方法和体系结构的分类和表征描述。
translated by 谷歌翻译
面部演示攻击检测(PAD)由于欺骗欺骗性被广泛认可的脆弱性而受到越来越长。在2011年,2013年,2017年,2019年,2020年和2021年与主要生物识别和计算机视觉会议结合的八个国际竞赛中,在八个国际竞赛中评估了一系列国际竞争中的八种国际竞争中的艺术状态。研究界。在本章中,我们介绍了2019年的五个最新竞赛的设计和结果直到2021年。前两项挑战旨在评估近红外(NIR)和深度方式的多模态设置中面板的有效性。彩色相机数据,而最新的三个竞争专注于评估在传统彩色图像和视频上运行的面部垫算法的域和攻击型泛化能力。我们还讨论了从竞争中吸取的经验教训以及领域的未来挑战。
translated by 谷歌翻译
展示了在欧洲生物安全卓越网络框架内设计和获取的新的多模态生物识别数据库。它由600多个个人在三种情况下在三种情况下获得:1)在互联网上,2)在带台式PC的办公环境中,以及3)在室内/室外环境中,具有移动便携式硬件。这三种方案包括音频/视频数据的共同部分。此外,已使用桌面PC和移动便携式硬件获取签名和指纹数据。此外,使用桌面PC在第二个方案中获取手和虹膜数据。收购事项已于11名欧洲机构进行。 BioSecure多模式数据库(BMDB)的其他功能有:两个采集会话,在某些方式的几种传感器,均衡性别和年龄分布,多式化现实情景,每种方式,跨欧洲多样性,人口统计数据的可用性,以及人口统计数据的可用性与其他多模式数据库的兼容性。 BMDB的新型收购条件允许我们对单币或多模式生物识别系统进行新的具有挑战性的研究和评估,如最近的生物安全的多模式评估活动。还给出了该活动的描述,包括来自新数据库的单个模式的基线结果。预计数据库将通过2008年通过生物安全协会进行研究目的
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
最近,面部生物识别是对传统认证系统的方便替代的巨大关注。因此,检测恶意尝试已经发现具有重要意义,导致面部抗欺骗〜(FAS),即面部呈现攻击检测。与手工制作的功能相反,深度特色学习和技术已经承诺急剧增加FAS系统的准确性,解决了实现这种系统的真实应用的关键挑战。因此,处理更广泛的发展以及准确的模型的新研究区越来越多地引起了研究界和行业的关注。在本文中,我们为自2017年以来对与基于深度特征的FAS方法相关的文献综合调查。在这一主题上阐明,基于各种特征和学习方法的语义分类。此外,我们以时间顺序排列,其进化进展和评估标准(数据集内集和数据集互联集合中集)覆盖了FAS的主要公共数据集。最后,我们讨论了开放的研究挑战和未来方向。
translated by 谷歌翻译
EAR识别系统已被广泛研究,而耳识别系统只有几个耳朵呈现攻击检测方法,因此,没有公开的耳朵呈现攻击检测(PAD)数据库。在本文中,我们提出了一种使用预先训练的深神经网络的焊盘方法,并释放名为华沙理工大学的新数据集进行演示攻击检测(WUT-EAR V1.0)。没有使用移动设备捕获的耳朵数据库。因此,我们捕获了超过8500个真正的耳朵图像,从134个受试者和超过8500个假耳朵图像使用。我们用3个不同的移动设备进行了重放攻击和照片打印攻击。我们的方法在重放攻击数据库上分别实现了半误差率(HTER)和攻击演示分类错误速率(APPer)的半总差错率(HTER)和0.08%。分析捕获的数据并在统计上进行了分析和可视化,以了解其重要性并使其成为进一步研究的基准。已经发现了一种用于耳输识别系统,公开的耳朵图像和耳垫数据集的安全焊盘方法。该代码和评估结果在https://github.com/jalilnkh/kartalolool-ear-pad上公开使用。
translated by 谷歌翻译
增强隐私技术是实施基本数据保护原则的技术。关于生物识别识别,已经引入了不同类型的隐私增强技术来保护储存的生物特征识别数据,这些数据通常被归类为敏感。在这方面,已经提出了各种分类法和概念分类,并进行了标准化活动。但是,这些努力主要致力于某些隐私增强技术的子类别,因此缺乏概括。这项工作概述了统一框架中生物识别技术隐私技术的概念。在每个处理步骤中,详细介绍了现有概念之间的关键方面和差异。讨论了现有方法的基本属性和局限性,并与数据保护技术和原理有关。此外,提出了评估生物识别技术的隐私技术评估的场景和方法。本文是针对生物识别数据保护领域的进入点,并针对经验丰富的研究人员以及非专家。
translated by 谷歌翻译
本文审查了视觉隐私保护技术中最先进的技术,特别注意适用于主动和辅助生活领域的技术(aal)。介绍了一种新的分类,可以归类最先进的视觉隐私保护方法。突出显示了传教性的感知混淆方法,是分类学中的一个类别。这些是一类视觉隐私保存技术,特别是在考虑基于视频的AAL监控的情况时特别相关。还探讨了对机器学习模型的混淆。设计的不同隐私层面的高级分类方案与视觉隐私保存技术的拟议分类有关。最后,我们注意到现场存在的开放问题,并将读者介绍给一些令人兴奋的途径,以便在视觉隐私区域的未来研究。
translated by 谷歌翻译
对医疗保健监控的远程工具的需求从未如此明显。摄像机测量生命体征利用成像装置通过分析人体的图像来计算生理变化。建立光学,机器学习,计算机视觉和医学的进步这些技术以来的数码相机的发明以来已经显着进展。本文介绍了对生理生命体征的相机测量综合调查,描述了它们可以测量的重要标志和实现所做的计算技术。我涵盖了临床和非临床应用以及这些应用需要克服的挑战,以便从概念上推进。最后,我描述了对研究社区可用的当前资源(数据集和代码),并提供了一个全面的网页(https://cameravitals.github.io/),其中包含这些资源的链接以及其中引用的所有文件的分类列表文章。
translated by 谷歌翻译
面部面罩已成为减少Covid-19传输的主要方法之一。这使得面部识别(FR)成为一个具有挑战性的任务,因为掩模隐藏了几个面孔的鉴别特征。此外,面部呈现攻击检测(PAD)至关重要,以确保FR系统的安全性。与越来越多的蒙面的FR研究相比,尚未探索面部遮蔽攻击对垫的影响。因此,我们提出了与戴上面具的主题和攻击的真正面罩的新型攻击,以反映当前的现实情况。此外,本研究通过在不同的实验设置下使用七种最新的垫算法来研究屏蔽攻击对垫性能的影响。我们还评估FR系统漏洞屏蔽攻击。实验表明,真正掩盖的攻击对FR系统的操作和安全构成了严重威胁。
translated by 谷歌翻译
基于全面的生物识别是一个广泛的研究区域。然而,仅使用部分可见的面,例如在遮盖的人的情况下,是一个具有挑战性的任务。在这项工作中使用深卷积神经网络(CNN)来提取来自遮盖者面部图像的特征。我们发现,第六和第七完全连接的层,FC6和FC7分别在VGG19网络的结构中提供了鲁棒特征,其中这两层包含4096个功能。这项工作的主要目标是测试基于深度学习的自动化计算机系统的能力,不仅要识别人,还要对眼睛微笑等性别,年龄和面部表达的认可。我们的实验结果表明,我们为所有任务获得了高精度。最佳记录的准确度值高达99.95%,用于识别人员,99.9%,年龄识别的99.9%,面部表情(眼睛微笑)认可为80.9%。
translated by 谷歌翻译
步态识别旨在通过相机来识别一个距离的人。随着深度学习的出现,步态识别的重大进步通过使用深度学习技术在许多情况下取得了鼓舞人心的成功。然而,对视频监视的越来越多的需求引入了更多的挑战,包括在各种方差下进行良好的识别,步态序列中的运动信息建模,由于协议方差,生物量标准安全性和预防隐私而引起的不公平性能比较。本文对步态识别的深度学习进行了全面的调查。我们首先介绍了从传统算法到深层模型的步态识别的奥德赛,从而提供了对步态识别系统的整个工作流程的明确知识。然后,从深度表示和建筑的角度讨论了步态识别的深入学习,并深入摘要。具体而言,深层步态表示分为静态和动态特征,而深度体系结构包括单流和多流架构。遵循我们提出的新颖性分类法,它可能有益于提供灵感并促进对步态认识的感知。此外,我们还提供了所有基于视觉的步态数据集和性能分析的全面摘要。最后,本文讨论了一些潜在潜在前景的开放问题。
translated by 谷歌翻译
大多数手指静脉特征提取算法由于其质地表示能力而达到满意的性能,尽管同时忽略了手指组织形成的强度分布,以及在某些情况下,将其加工为背景噪声。在本文中,我们利用这种噪音作为一种新型软生物识别性状,以实现更好的手指静脉识别性能。首先,提出了对手指静脉成像原理的详细分析和图像的特性,以表明由背景中的手指组织形成的强度分布可以作为柔软的生物分析来识别。然后,提出了两个指静脉背景层提取算法和三个软生物识别性提取算法,用于强度分布特征提取。最后,提出了一种混合匹配策略来解决初级和软生物识别性质之间的尺寸差异在得分水平上。三个开放式数据库的一系列严格对比实验表明,我们所提出的方法是手指静脉识别的可行和有效。
translated by 谷歌翻译