Variational Graph Autoencoders (VGAEs) are powerful models for unsupervised learning of node representations from graph data. In this work, we systematically analyze modeling node attributes in VGAEs and show that attribute decoding is important for node representation learning. We further propose a new learning model, interpretable NOde Representation with Attribute Decoding (NORAD). The model encodes node representations in an interpretable approach: node representations capture community structures in the graph and the relationship between communities and node attributes. We further propose a rectifying procedure to refine node representations of isolated notes, improving the quality of these nodes' representations. Our empirical results demonstrate the advantage of the proposed model when learning graph data in an interpretable approach.
translated by 谷歌翻译
Graph AutoCododers(GAE)和变分图自动编码器(VGAE)作为链接预测的强大方法出现。他们的表现对社区探测问题的印象不那么令人印象深刻,根据最近和同意的实验评估,它们的表现通常超过了诸如louvain方法之类的简单替代方案。目前尚不清楚可以通过GAE和VGAE改善社区检测的程度,尤其是在没有节点功能的情况下。此外,不确定是否可以在链接预测上同时保留良好的性能。在本文中,我们表明,可以高精度地共同解决这两个任务。为此,我们介绍和理论上研究了一个社区保留的消息传递方案,通过在计算嵌入空间时考虑初始图形结构和基于模块化的先验社区来掺杂我们的GAE和VGAE编码器。我们还提出了新颖的培训和优化策略,包括引入一个模块化的正规器,以补充联合链路预测和社区检测的现有重建损失。我们通过对各种现实世界图的深入实验验证,证明了方法的经验有效性,称为模块化感知的GAE和VGAE。
translated by 谷歌翻译
Clustering is a fundamental problem in network analysis that finds closely connected groups of nodes and separates them from other nodes in the graph, while link prediction is to predict whether two nodes in a network are likely to have a link. The definition of both naturally determines that clustering must play a positive role in obtaining accurate link prediction tasks. Yet researchers have long ignored or used inappropriate ways to undermine this positive relationship. In this article, We construct a simple but efficient clustering-driven link prediction framework(ClusterLP), with the goal of directly exploiting the cluster structures to obtain connections between nodes as accurately as possible in both undirected graphs and directed graphs. Specifically, we propose that it is easier to establish links between nodes with similar representation vectors and cluster tendencies in undirected graphs, while nodes in a directed graphs can more easily point to nodes similar to their representation vectors and have greater influence in their own cluster. We customized the implementation of ClusterLP for undirected and directed graphs, respectively, and the experimental results using multiple real-world networks on the link prediction task showed that our models is highly competitive with existing baseline models. The code implementation of ClusterLP and baselines we use are available at https://github.com/ZINUX1998/ClusterLP.
translated by 谷歌翻译
给定实体及其在Web数据中的交互,可能在不同的时间发生,我们如何找到实体社区并跟踪其演变?在本文中,我们从图形群集的角度处理这项重要任务。最近,通过深层聚类方法,已经实现了各个领域的最新聚类性能。特别是,深图聚类(DGC)方法通过学习节点表示和群集分配在关节优化框架中成功扩展到图形结构的数据。尽管建模选择有所不同(例如,编码器架构),但现有的DGC方法主要基于自动编码器,并使用相同的群集目标和相对较小的适应性。同样,尽管许多现实世界图都是动态的,但以前的DGC方法仅被视为静态图。在这项工作中,我们开发了CGC,这是一个新颖的端到端图形聚类框架,其与现有方法的根本不同。 CGC在对比度图学习框架中学习节点嵌入和群集分配,在多级别方案中仔细选择了正面和负样本,以反映层次结构的社区结构和网络同质。此外,我们将CGC扩展到时间不断发展的数据,其中时间图以增量学习方式执行,并具有检测更改点的能力。对现实世界图的广泛评估表明,所提出的CGC始终优于现有方法。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译
在本文中,我们提出了一个通用框架,以缩放图形自动编码器(AE)和图形自动编码器(VAE)。该框架利用图形退化概念仅从一个密集的节点子集训练模型,而不是使用整个图。加上一种简单而有效的传播机制,我们的方法可显着提高可扩展性和训练速度,同时保持性能。我们在现有图AE和VAE的几种变体上评估和讨论我们的方法,并将这些模型的首次应用于具有多达数百万个节点和边缘的大图。我们取得了经验竞争的结果W.R.T.几种流行的可扩展节点嵌入方法,这些方法强调了对更可扩展图AE和VAE进行进一步研究的相关性。
translated by 谷歌翻译
我们展示了拓扑转型等值表示学习,是图形数据节点表示的自我监督学习的一般范式,以实现图形卷积神经网络(GCNNS)的广泛适用性。通过在转换之前和之后的拓扑转换和节点表示之间的相互信息,从信息理论的角度来看,我们将提出的模型正式化。我们得出最大化这种相互信息可以放宽以最小化应用拓扑变换与节点表示之间的估计之间的跨熵。特别是,我们寻求从原始图表中采样节点对的子集,并在每对之间翻转边缘连接以改变图形拓扑。然后,我们通过从原始和变换图的特征表示重构拓扑转换来自动列出表示编码器以学习节点表示。在实验中,我们将所提出的模型应用于下游节点分类,图形分类和链路预测任务,结果表明,所提出的方法优于现有的无监督方法。
translated by 谷歌翻译
基于观察到的图,对在关系结构数据上应用机器学习技术的兴趣增加了。通常,该图并不能完全代表节点之间的真实关系。在这些设置中,构建以观测图为条件的生成模型可以考虑图形不确定性。各种现有技术要么依赖于限制性假设,无法在样品中保留拓扑特性,要么在较大的图表中昂贵。在这项工作中,我们介绍了用于通过图形构建分布的节点复制模型。随机图的采样是通过替换每个节点的邻居的邻居来进行采样的。采样图保留图形结构的关键特征,而无需明确定位它们。此外,该模型的采样非常简单,并与节点线性缩放。我们在三个任务中显示了复制模型的有用性。首先,在节点分类中,基于节点复制的贝叶斯公式在稀疏数据设置中实现了更高的精度。其次,我们采用建议的模型来减轻对抗攻击对图形拓扑的影响。最后,将模型纳入推荐系统设置,改善了对最新方法的回忆。
translated by 谷歌翻译
给定图表具有部分观察到节点特征,我们如何准确估计缺失功能?特征估计是分析现实图表的关键问题,其特征在数据收集过程中通常缺少。准确的估计不仅提供了节点的多种信息,而且还支持需要全面观察节点特征的图形神经网络的推断。但是,设计一种估计高维特征的有效方法是具有挑战性的,因为它要求估算器具有较大的表示能力,从而增加过度拟合的风险。在这项工作中,我们提出了SVGA(结构化变分图自动编码器),这是一种精确的特征估计方法。 SVGA通过结构化变异推断将强固体化应用于潜在变量的分布,该变量推断将变量的先前作为基于图结构的高斯马尔可夫随机字段建模。结果,SVGA结合了概率推理和图形神经网络的优势,在实际数据集中实现了最新性能。
translated by 谷歌翻译
我们介绍了一种新颖的屏蔽图AutoEncoder(MGAE)框架,以在图形结构数据上执行有效的学习。从自我监督学习中欣识见,我们随机掩盖了大部分边缘,并在训练期间尝试重建这些缺失的边缘。 Mgae有两个核心设计。首先,我们发现掩蔽了输入图结构的高比率,例如70 \%$,产生一个非凡和有意义的自我监督任务,使下游应用程序受益。其次,我们使用图形神经网络(GNN)作为编码器,以在部分掩蔽的图表上执行消息传播。为了重建大量掩模边缘,提出了一种定制的互相关解码器。它可以捕获多粒度的锚边的头部和尾部节点之间的互相关。耦合这两种设计使MGAE能够有效且有效地培训。在多个开放数据集(Planetoid和OGB基准测试)上进行了广泛的实验,证明MGAE通常比链接预测和节点分类更好地表现优于最先进的无监督竞争对手。
translated by 谷歌翻译
网络嵌入作为网络分析的有希望的研究领域出现。最近,通过将冗余还原原理应用于对应于图像样本的两个扭曲版本的嵌入向量,提出了一种名为Barlow双胞胎的方法。通过此激励,我们提出了Barlow Graph自动编码器,这是一个简单而有效的学习网络嵌入的架构。它旨在最大限度地提高节点的立即和较大邻域的嵌入向量之间的相似性,同时最小化这些投影的组件之间的冗余。此外,我们还介绍了名为Barlow变形图自动编码器的变型对应物。我们的方法产生了对归纳链路预测的有希望的结果,并且还涉及用于聚类和下游节点分类的领域,如广泛的三个基准引用数据集上的多种已知技术的广泛比较所证明的。
translated by 谷歌翻译
网络完成是一个比链接预测更难的问题,因为它不仅尝试推断丢失的链接,还要推断节点。已经提出了不同的方法来解决此问题,但是很少有人使用结构信息 - 局部连接模式的相似性。在本文中,我们提出了一个名为C-GIN的模型,以根据图形自动编码器框架从网络的观察到的部分捕获局部结构模式,该框架配备了图形同构网络模型,并将这些模式推广到完成整个图形。对来自不同领域的合成和现实世界网络的实验和分析表明,C-Gin可以实现竞争性能,而所需的信息较少,并且在大多数情况下,与基线预测模型相比,可以获得更高的准确性。我们进一步提出了一个基于网络结构的“可达聚类系数(CC)”。实验表明,我们的模型在具有较高可及的CC的网络上表现更好。
translated by 谷歌翻译
图形神经网络(GNN)已在许多图分析任务(例如节点分类和链接预测)上实现了最新结果。然而,事实证明,图形群集等图形上的重要无监督问题对GNN的进步具有更大的抵抗力。图群集的总体目标与GNN中的节点合并相同 - 这是否意味着GNN池方法在聚类图上做得很好?令人惊讶的是,答案是没有的 - 当前的GNN合并方法通常无法恢复群集结构,而在简单的基线(例如应用于学习的表示形式上的K-均值)良好工作的情况下。我们通过仔细设计一组实验来进一步研究,以研究图形结构和属性数据中的不同信噪比情景。为了解决这些方法在聚类中的性能不佳,我们引入了深层模块化网络(DMON),这是一种受群集质量模块化量度启发的无监督池方法,并显示了它如何解决现实世界图的挑战性聚类结构的恢复。同样,在现实世界中,我们表明DMON产生的高质量簇与地面真相标签密切相关,从而实现了最先进的结果,比不同指标的其他合并方法提高了40%以上。
translated by 谷歌翻译
Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph (e.g., degree statistics or kernel functions). However, recent years have seen a surge in approaches that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. Here we provide a conceptual review of key advancements in this area of representation learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and graph neural networks. We review methods to embed individual nodes as well as approaches to embed entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches, and we highlight a number of important applications and directions for future work.
translated by 谷歌翻译
在本文中,我们研究了在非全粒图上进行节点表示学习的自我监督学习的问题。现有的自我监督学习方法通​​常假定该图是同质的,其中链接的节点通常属于同一类或具有相似的特征。但是,这种同质性的假设在现实图表中并不总是正确的。我们通过为图神经网络开发脱钩的自我监督学习(DSSL)框架来解决这个问题。 DSSL模仿了节点的生成过程和语义结构的潜在变量建模的链接,该过程将不同邻域之间的不同基础语义解散到自我监督的节点学习过程中。我们的DSSL框架对编码器不可知,不需要预制的增强,因此对不同的图表灵活。为了通过潜在变量有效地优化框架,我们得出了自我监督目标的较低范围的证据,并开发了具有变异推理的可扩展培训算法。我们提供理论分析,以证明DSSL享有更好的下游性能。与竞争性的自我监督学习基线相比,对各种类图基准的广泛实验表明,我们提出的框架可以显着取得更好的性能。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
由于在建模相互依存系统中,由于其高效用,多层图已经在许多领域获得了大量的研究。然而,多层图的聚类,其旨在将图形节点划分为类别或社区,仍处于新生阶段。现有方法通常限于利用MultiView属性或多个网络,并忽略更复杂和更丰富的网络框架。为此,我们向多层图形聚类提出了一种名为Multidayer agal对比聚类网络(MGCCN)的多层图形聚类的通用和有效的AutoEncoder框架。 MGCCN由三个模块组成:(1)应用机制以更好地捕获节点与邻居之间的相关性以获得更好的节点嵌入。 (2)更好地探索不同网络中的一致信息,引入了对比融合策略。 (3)MGCCN采用自我监督的组件,可迭代地增强节点嵌入和聚类。对不同类型的真实图数据数据的广泛实验表明我们所提出的方法优于最先进的技术。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译
随着对比学习的兴起,无人监督的图形表示学习最近一直蓬勃发展,甚至超过了一些机器学习任务中的监督对应物。图表表示的大多数对比模型学习侧重于最大化本地和全局嵌入之间的互信息,或主要取决于节点级别的对比嵌入。然而,它们仍然不足以全面探索网络拓扑的本地和全球视图。虽然前者认为本地全球关系,但其粗略的全球信息导致本地和全球观点之间的思考。后者注重节点级别对齐,以便全局视图的作用出现不起眼。为避免落入这两个极端情况,我们通过对比群集分配来提出一种新颖的无监督图形表示模型,称为GCCA。通过组合聚类算法和对比学习,它有动力综合利用本地和全球信息。这不仅促进了对比效果,而且还提供了更高质量的图形信息。同时,GCCA进一步挖掘群集级信息,这使得它能够了解除了图形拓扑之外的节点之间的难以捉摸的关联。具体地,我们首先使用不同的图形增强策略生成两个增强的图形,然后使用聚类算法分别获取其群集分配和原型。所提出的GCCA进一步强制不同增强图中的相同节点来通过最小化交叉熵损失来互相识别它们的群集分配。为了展示其有效性,我们将在三个不同的下游任务中与最先进的模型进行比较。实验结果表明,GCCA在大多数任务中具有强大的竞争力。
translated by 谷歌翻译