监测草原的健康和活力对于告知管理决策至关优化农业应用中的旋转放牧的态度至关重要。为了利用饲料资源,提高土地生产力,我们需要了解牧场的增长模式,这在最先进的状态下即可。在本文中,我们建议部署一个机器人团队来监测一个未知的牧场环境的演变,以实现上述目标。为了监测这种环境,通常会缓慢发展,我们需要设计一种以低成本在大面积上快速评估环境的策略。因此,我们提出了一种集成管道,包括数据综合,深度神经网络训练和预测以及一个间歇地监测牧场的多机器人部署算法。具体而言,使用与ROS Gazebo的新型数据综合耦合的专家知识的农业数据,我们首先提出了一种新的神经网络架构来学习环境的时空动态。这种预测有助于我们了解大规模上的牧场增长模式,并为未来做出适当的监测决策。基于我们的预测,我们设计了一个用于低成本监控的间歇多机器人部署策略。最后,我们将提议的管道与其他方法进行比较,从数据综合到预测和规划,以证实我们的管道的性能。
translated by 谷歌翻译
在本文中,我们制定和解决间歇部署问题,从而产生了夫妇\ emph {当异质机器人应该感知环境过程的策略,其中一支部署的团队应该在环境中感知。作为一种动机,假设不必要的多机器人团队,例如无人驾驶飞行器监测牧场在精确农业背景下监控牧场的慢慢发展。在这种情况下,作为缓慢不断发展的过程,持久部署或监视是必要的间歇部署策略是必要的。与此同时,在部署一旦部署的地方的问题必须解决,因为过程观察产生了确定有效未来部署和监测决策的有用反馈。在这种情况下,我们将环境进程建模为作为一种时空高斯过程,以互信作为衡量我们对环境理解的标准。为了使传感资源有效,我们展示了如何使用Matroid约束来强加多样化的均匀和异构的约束。此外,为了反映现实世界应用的成本敏感性质,我们申请预算为部署的异构机器人团队的成本。为了解决所产生的问题,我们利用子模具优化和麦芽瘤的理论,并提出了一种贪婪算法,借助次级最优性。最后,蒙特卡罗模拟证明了所提出的方法的正确性。
translated by 谷歌翻译
在本文中,我们证明了一种用于优化耦合子模块的最大化问题的制定,具有可提供的次优先界限。在机器人应用中,很常见的是优化问题彼此耦合,因此不能独立解决。具体地,如果第一问题的结果影响第二问题的解决方案,我们考虑两个问题耦合的两个问题,该第二问题在更长的时间尺度上运行。例如,在环境监测的激励问题中,我们对多机器人任务分配有可能影响环境动态,从而影响未来监测的质量,在这里建模为多机器人间歇部署问题。通过该激励例证明了解决这种类型耦合问题的一般理论方法。具体地,我们提出了一种求解由Matroid约束模拟的子模具集功能建模的耦合问题的方法。提出了一种解决这类问题的贪婪算法,以及子最优的保证。最后,通过蒙特卡罗模拟示出了实用的最优比率,以证明所提出的算法可以高效率产生近最佳解决方案。
translated by 谷歌翻译
在本文中,我们为具有异质传感器的机器人团队提供了在线自适应计划策略,以使用学习的模型进行决策模型从潜在空间领域进行采样。当前的机器人抽样方法试图收集有关可观察到的空间场的信息。但是,许多应用程序,例如环境监测和精确农业,都涉及不直接观察或衡量昂贵的现象,称为潜在现象。在我们的方法中,我们试图通过使用具有异质传感器的机器人团队有效地采样可观察到的空间场来实时推理潜在现象,在这种空间场中,每个机器人都有一个独特的传感器来测量不同可观察的场。信息增益是使用从可观察到的空间场映射到潜在现象的学习模型来估计的。该模型捕获了关系中的不确定性,以允许信息理论措施。此外,我们明确考虑可观察到的空间场之间的相关性,从而捕获了观察结果并非独立的传感器类型之间的关系。我们表明,可以学习这些相关性,并研究学习相关模型对我们采样方法性能的影响。通过我们的定性和定量结果,我们说明了经验学习的相关性提高了团队的整体抽样效率。我们使用在魁北克的Lac Hertel上收集的传感器测量数据集模拟我们的方法,我们可以公开使用。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第二篇论文介绍了数字双胞胎的关键启示技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文介绍了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GITHUB上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
translated by 谷歌翻译
以知情方式监测和管理地球林是解决生物多样性损失和气候变化等挑战的重要要求。虽然森林评估的传统或空中运动提供了在区域一级分析的准确数据,但将其扩展到整个国家,以外的高度分辨率几乎不可能。在这项工作中,我们提出了一种贝叶斯深度学习方法,以10米的分辨率为全国范围的森林结构变量,使用自由可用的卫星图像作为输入。我们的方法将Sentinel-2光学图像和Sentinel-1合成孔径雷达图像共同变换为五种不同的森林结构变量的地图:95th高度百分位,平均高度,密度,基尼系数和分数盖。我们从挪威的41个机载激光扫描任务中培训和测试我们的模型,并证明它能够概括取消测试区域,从而达到11%和15%之间的归一化平均值误差,具体取决于变量。我们的工作也是第一个提出贝叶斯深度学习方法的工作,以预测具有良好校准的不确定性估计的森林结构变量。这些提高了模型的可信度及其适用于需要可靠的信心估计的下游任务,例如知情决策。我们提出了一组广泛的实验,以验证预测地图的准确性以及预测的不确定性的质量。为了展示可扩展性,我们为五个森林结构变量提供挪威地图。
translated by 谷歌翻译
由于它可能对粮食安全,可持续性,资源利用效率,化学处理的降低以及人类努力和产量的优化,因此,自主机器人在农业中的应用正在越来越受欢迎。有了这一愿景,蓬勃发展的研究项目旨在开发一种适应性的机器人解决方案,用于精确耕作,该解决方案结合了小型自动无人驾驶飞机(UAV)(UAV)的空中调查能力以及由多功能无人驾驶的无人接地车(UGV)执行的针对性干预措施。本文概述了该项目中获得的科学和技术进步和结果。我们引入了多光谱感知算法以及空中和地面系统,用于监测农作物密度,杂草压力,作物氮营养状况,并准确地对杂草进行分类和定位。然后,我们介绍了针对我们在农业环境中机器人身份量身定制的导航和映射系统,以及用于协作映射的模块。我们最终介绍了我们在不同的现场条件和不同农作物中实施和测试的地面干预硬件,软件解决方案以及接口。我们描述了一个真正的用例,在该案例中,无人机与UGV合作以监视该领域并进行选择性喷涂而无需人工干预。
translated by 谷歌翻译
主动位置估计(APE)是使用一个或多个传感平台本地化一个或多个目标的任务。 APE是搜索和拯救任务,野生动物监测,源期限估计和协作移动机器人的关键任务。 APE的成功取决于传感平台的合作水平,他们的数量,他们的自由度和收集的信息的质量。 APE控制法通过满足纯粹剥削或纯粹探索性标准,可以实现主动感测。前者最大限度地减少了位置估计的不确定性;虽然后者驱动了更接近其任务完成的平台。在本文中,我们定义了系统地分类的主要元素,并批判地讨论该域中的最新状态。我们还提出了一个参考框架作为对截图相关的解决方案的形式主义。总体而言,本调查探讨了主要挑战,并设想了本地化任务的自主感知系统领域的主要研究方向。促进用于搜索和跟踪应用的强大主动感测方法的开发也有益。
translated by 谷歌翻译
深度学习模式和地球观察的协同组合承诺支持可持续发展目标(SDGS)。新的发展和夸张的申请已经在改变人类将面临生活星球挑战的方式。本文审查了当前对地球观测数据的最深入学习方法,以及其在地球观测中深度学习的快速发展受到影响和实现最严重的SDG的应用。我们系统地审查案例研究至1)实现零饥饿,2)可持续城市,3)提供保管安全,4)减轻和适应气候变化,5)保留生物多样性。关注重要的社会,经济和环境影响。提前令人兴奋的时期即将到来,算法和地球数据可以帮助我们努力解决气候危机并支持更可持续发展的地方。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
近年来,研究人员委托机器人和无人驾驶汽车(UAV)团队委托进行准确的在线野火覆盖范围和跟踪。迄今为止,大多数先前的工作都集中在此类多机器人系统的协调和控制上,但尚未赋予这些无人机团队对火的轨道(即位置和传播动态)进行推理的能力,以提供性能保证时间范围。在空中野火监测的问题上,我们提出了一个预测框架,该框架使多UAV团队的合作能够与概率性能保证一起进行协作现场覆盖和火灾跟踪。我们的方法使无人机能够推断出潜在的火灾传播动态,以在安全至关重要的条件下进行时间扩展的协调。我们得出了一组新颖的,分析的时间和跟踪纠纷界限,以使无人机团队根据特定于案例的估计状态分发有限的资源并覆盖整个火灾区域,并提供概率性能保证。我们的结果不仅限于空中野火监测案例研究,而且通常适用于搜索和救援,目标跟踪和边境巡逻等问题。我们在模拟中评估了我们的方法,并在物理多机器人测试台上提供了建议的框架,以说明真实的机器人动态和限制。我们的定量评估验证了我们的方法的性能,分别比基于最新的模型和强化学习基准分别累积了7.5倍和9.0倍的跟踪误差。
translated by 谷歌翻译
Mapping with uncertainty representation is required in many research domains, such as localization and sensor fusion. Although there are many uncertainty explorations in pose estimation of an ego-robot with map information, the quality of the reference maps is often neglected. To avoid the potential problems caused by the errors of maps and a lack of the uncertainty quantification, an adequate uncertainty measure for the maps is required. In this paper, uncertain building models with abstract map surface using Gaussian Process (GP) is proposed to measure the map uncertainty in a probabilistic way. To reduce the redundant computation for simple planar objects, extracted facets from a Gaussian Mixture Model (GMM) are combined with the implicit GP map while local GP-block techniques are used as well. The proposed method is evaluated on LiDAR point clouds of city buildings collected by a mobile mapping system. Compared to the performances of other methods such like Octomap, Gaussian Process Occupancy Map (GPOM) and Bayersian Generalized Kernel Inference (BGKOctomap), our method has achieved higher Precision-Recall AUC for evaluated buildings.
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
我们向连续状态马尔可夫决策过程(MDP)提出了一种扩散近似方法,该方法可用于解决非结构化的越野环境中的自主导航和控制。与呈现完全已知的状态转换模型的大多数决策定理计划框架相比,我们设计了一种方法,该方法消除了这种强烈假设,这些假设通常非常难以在现实中工程师。我们首先采用价值函数的二阶泰勒扩展。然后通过部分微分方程近似贝尔曼的最优性方程,其仅依赖于转换模型的第一和第二矩。通过组合价值函数的内核表示,然后设计一种有效的策略迭代算法,其策略评估步骤可以表示为特征的方程式的线性系统,其特征是由有限组支持状态。我们首先通过大量的仿真以2D美元的$ 2D $避让和2.5d $地形导航问题进行验证。结果表明,拟议的方法在几个基线上导致了卓越的性能。然后,我们开发一个系统,该系统将我们的决策框架整合,与船上感知,并在杂乱的室内和非结构化的户外环境中进行现实世界的实验。物理系统的结果进一步展示了我们在挑战现实世界环境中的方法的适用性。
translated by 谷歌翻译
主动同时定位和映射(SLAM)是规划和控制机器人运动以构建周围环境中最准确,最完整的模型的问题。自从三十多年前出现了积极感知的第一项基础工作以来,该领域在不同科学社区中受到了越来越多的关注。这带来了许多不同的方法和表述,并回顾了当前趋势,对于新的和经验丰富的研究人员来说都是非常有价值的。在这项工作中,我们在主动大满贯中调查了最先进的工作,并深入研究了仍然需要注意的公开挑战以满足现代应用程序的需求。为了实现现实世界的部署。在提供了历史观点之后,我们提出了一个统一的问题制定并审查经典解决方案方案,该方案将问题分解为三个阶段,以识别,选择和执行潜在的导航措施。然后,我们分析替代方法,包括基于深入强化学习的信念空间规划和现代技术,以及审查有关多机器人协调的相关工作。该手稿以讨论新的研究方向的讨论,解决可再现的研究,主动的空间感知和实际应用,以及其他主题。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
我们提出了一种生成,预测和使用时空占用网格图(SOGM)的方法,该方法嵌入了真实动态场景的未来语义信息。我们提出了一个自动标记的过程,该过程从嘈杂的真实导航数据中创建SOGM。我们使用3D-2D馈电体系结构,经过训练,可以预测SOGM的未来时间步骤,并给定3D激光镜框架作为输入。我们的管道完全是自我监督的,从而为真正的机器人提供了终身学习。该网络由一个3D后端组成,该后端提取丰富的特征并实现了激光镜框架的语义分割,以及一个2D前端,可预测SOGM表示中嵌入的未来信息,从而有可能捕获房地产的复杂性和不确定性世界多代理,多未来的互动。我们还设计了一个导航系统,该导航系统在计划中使用这些预测的SOGM在计划中,之后它们已转变为时空风险图(SRMS)。我们验证导航系统在模拟中的能力,在真实的机器人上对其进行验证,在各种情况下对真实数据进行研究SOGM预测,并提供一种新型的室内3D LIDAR数据集,该数据集在我们的实验中收集,其中包括我们的自动注释。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译