医学图像分割是基于人工智能的临床决策系统的基本问题之一。目前的自动医学图像分割方法往往未能满足临床要求。因此,提出了一系列交互式分段算法来利用专家校正信息。然而,现有方法在长期互动之后遭受一些分割炼制失败问题,以及来自专家注释的一些成本问题,这阻碍了临床应用。本文通过引入纠正措施评估,提出了一种互动分割框架,称为交互式医疗细分,通过引入纠正措施评估,该纠正措施评估结合了基于动作的置信度学习和多智能体增强学习(Marl)。通过新颖的基于行动的置信网络建立评估,并从Marl获得纠正措施。基于机密信息,旨在提供更详细的反馈,并在无监督数据上提出模拟标签生成机制,以减少对标记数据的过度依赖性的模拟标签生成机制。各种医学图像数据集的实验结果显示了所提出的算法的显着性能。
translated by 谷歌翻译
动机:医学图像分析涉及帮助医师对病变或解剖结构进行定性和定量分析的任务,从而显着提高诊断和预后的准确性和可靠性。传统上,这些任务由医生或医学物理学家完成,并带来两个主要问题:(i)低效率; (ii)受个人经验的偏见。在过去的十年中,已经应用了许多机器学习方法来加速和自动化图像分析过程。与受监督和无监督的学习模型的大量部署相比,在医学图像分析中使用强化学习的尝试很少。这篇评论文章可以作为相关研究的垫脚石。意义:从我们的观察结果来看,尽管近年来增强学习逐渐增强了动力,但医学分析领域的许多研究人员发现很难理解和部署在诊所中。一个原因是缺乏组织良好的评论文章,针对缺乏专业计算机科学背景的读者。本文可能没有提供医学图像分析中所有强化学习模型的全面列表,而是可以帮助读者学习如何制定和解决他们的医学图像分析研究作为强化学习问题。方法和结果:我们从Google Scholar和PubMed中选择了已发表的文章。考虑到相关文章的稀缺性,我们还提供了一些出色的最新预印本。根据图像分析任务的类型对论文进行仔细审查和分类。我们首先回顾了强化学习的基本概念和流行模型。然后,我们探讨了增强学习模型在具有里程碑意义的检测中的应用。最后,我们通过讨论审查的强化学习方法的局限性和可能的​​改进来结束这篇文章。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
基于深度学习的半监督学习(SSL)方法在医学图像细分中实现了强大的性能,可以通过使用大量未标记的数据来减轻医生昂贵的注释。与大多数现有的半监督学习方法不同,基于对抗性训练的方法通过学习分割图的数据分布来区分样本与不同来源,导致细分器生成更准确的预测。我们认为,此类方法的当前绩效限制是特征提取和学习偏好的问题。在本文中,我们提出了一种新的半监督的对抗方法,称为贴片置信疗法训练(PCA),用于医疗图像分割。我们提出的歧视器不是单个标量分类结果或像素级置信度图,而是创建贴片置信图,并根据斑块的规模进行分类。未标记数据的预测学习了每个贴片中的像素结构和上下文信息,以获得足够的梯度反馈,这有助于歧视器以融合到最佳状态,并改善半监督的分段性能。此外,在歧视者的输入中,我们补充了图像上的语义信息约束,使得未标记的数据更简单,以适合预期的数据分布。关于自动心脏诊断挑战(ACDC)2017数据集和脑肿瘤分割(BRATS)2019挑战数据集的广泛实验表明,我们的方法优于最先进的半监督方法,这证明了其对医疗图像分割的有效性。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
Diabetic Retinopathy (DR) is a leading cause of vision loss in the world, and early DR detection is necessary to prevent vision loss and support an appropriate treatment. In this work, we leverage interactive machine learning and introduce a joint learning framework, termed DRG-Net, to effectively learn both disease grading and multi-lesion segmentation. Our DRG-Net consists of two modules: (i) DRG-AI-System to classify DR Grading, localize lesion areas, and provide visual explanations; (ii) DRG-Expert-Interaction to receive feedback from user-expert and improve the DRG-AI-System. To deal with sparse data, we utilize transfer learning mechanisms to extract invariant feature representations by using Wasserstein distance and adversarial learning-based entropy minimization. Besides, we propose a novel attention strategy at both low- and high-level features to automatically select the most significant lesion information and provide explainable properties. In terms of human interaction, we further develop DRG-Net as a tool that enables expert users to correct the system's predictions, which may then be used to update the system as a whole. Moreover, thanks to the attention mechanism and loss functions constraint between lesion features and classification features, our approach can be robust given a certain level of noise in the feedback of users. We have benchmarked DRG-Net on the two largest DR datasets, i.e., IDRID and FGADR, and compared it to various state-of-the-art deep learning networks. In addition to outperforming other SOTA approaches, DRG-Net is effectively updated using user feedback, even in a weakly-supervised manner.
translated by 谷歌翻译
在本文中,我们提出了一个新型的相互一致性网络(MC-NET+),以有效利用未标记的数据进行半监督的医学图像分割。 MC-NET+模型的动机是通过观察到的,即经过有限注释训练的深模型很容易输出不确定的,易于分类的预测,例如模棱两可的区域(例如,粘合边缘或薄分支)进行医学图像分割。利用这些具有挑战性的样品可以使半监督分割模型训练更有效。因此,我们提出的MC-NET+模型由两个新设计组成。首先,该模型包含一个共享的编码器和多个略有不同的解码器(即使用不同的上采样策略)。计算多个解码器输出的统计差异以表示模型的不确定性,这表明未标记的硬区域。其次,我们在一个解码器的概率输出和其他解码器的软伪标签之间应用了一种新颖的相互一致性约束。通过这种方式,我们最大程度地减少了训练过程中多个输出(即模型不确定性)的差异,并迫使模型在此类具有挑战性的区域中产生不变的结果,旨在使模型训练正规化。我们将MC-NET+模型的细分结果与三个公共医疗数据集中的五种最先进的半监督方法进行了比较。具有两个标准半监督设置的扩展实验证明了我们模型的优越性能,而不是其他方法,这为半监督医学图像分割设定了新的最新技术。我们的代码将在https://github.com/ycwu1997/mc-net上公开发布。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
半监督学习在医疗领域取得了重大进展,因为它减轻了收集丰富的像素的沉重负担,用于针对语义分割任务。现有的半监督方法增强了利用从有限标记数据获得的现有知识从未标记数据提取功能的能力。然而,由于标记数据的稀缺性,模型提取的特征在监督学习中受到限制,并且对未标记数据的预测质量也无法保证。两者都将妨碍一致培训。为此,我们提出了一种新颖的不确定性感知计划,以使模型自动学习地区。具体而言,我们采用Monte Carlo采样作为获得不确定性地图的估计方法,该方法可以作为损失损失的重量,以强制根据监督学习和无监督学习的特征将模型专注于有价值的区域。同时,在后退过程中,我们通过增强不同任务之间的梯度流动,联合无监督和监督损失来加速网络的融合。定量地,我们对三个挑战的医疗数据集进行了广泛的实验。实验结果表明,最先进的对应物的理想改善。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
整个腹部器官分割起着腹部损伤诊断,放射治疗计划的重要作用,并随访。然而,划定肿瘤学家所有腹部器官手工费时且非常昂贵的。近日,深学习型医学图像分割显示,以减少人工划定努力的潜力,但它仍然需要培训的大型精细注释的数据集。虽然在这个任务很多努力,但仍然覆盖整个腹部区域与整个腹腔脏器分割准确和详细的注解几个大的图像数据集。在这项工作中,我们建立了一个大型的\ textit【W】孔腹部\ textit {} OR甘斯\ textit {d} ataset(\ {textit WORD})的算法研究和临床应用的发展。此数据集包含150个腹部CT体积(30495片),并且每个卷具有16个机关用细像素级注释和涂鸦基于稀疏注释,这可能是与整个腹部器官注释最大数据集。状态的最先进的几个分割方法是在该数据集进行评估。而且,我们还邀请了临床肿瘤学家修改模型预测测量深度学习方法和真实的肿瘤学家之间的差距。我们进一步介绍和评价这一数据集一个新的基于涂鸦,弱监督分割。该工作腹部多器官分割任务提供了新的基准,这些实验可以作为基准对未来的研究和临床应用的发展。 https://github.com/HiLab-git/WORD:代码库和数据集将被释放
translated by 谷歌翻译
主动学习(al)试图通过标记最少的样本来最大限度地提高模型的性能增益。深度学习(DL)是贪婪的数据,需要大量的数据电源来优化大量参数,因此模型了解如何提取高质量功能。近年来,由于互联网技术的快速发展,我们处于信息种类的时代,我们有大量的数据。通过这种方式,DL引起了研究人员的强烈兴趣,并已迅速发展。与DL相比,研究人员对Al的兴趣相对较低。这主要是因为在DL的崛起之前,传统的机器学习需要相对较少的标记样品。因此,早期的Al很难反映其应得的价值。虽然DL在各个领域取得了突破,但大多数这一成功都是由于大量现有注释数据集的宣传。然而,收购大量高质量的注释数据集消耗了很多人力,这在某些领域不允许在需要高专业知识,特别是在语音识别,信息提取,医学图像等领域中, al逐渐受到适当的关注。自然理念是AL是否可用于降低样本注释的成本,同时保留DL的强大学习能力。因此,已经出现了深度主动学习(DAL)。虽然相关的研究非常丰富,但它缺乏对DAL的综合调查。本文要填补这一差距,我们为现有工作提供了正式的分类方法,以及全面和系统的概述。此外,我们还通过申请的角度分析并总结了DAL的发展。最后,我们讨论了DAL中的混乱和问题,为DAL提供了一些可能的发展方向。
translated by 谷歌翻译
通过整合人类的知识和经验,人在循环旨在以最低成本培训准确的预测模型。人类可以为机器学习应用提供培训数据,并直接完成在基于机器的方法中对管道中计算机中的难以实现的任务。在本文中,我们从数据的角度调查了人类循环的现有工作,并将它们分为三类具有渐进关系:(1)从数据处理中提高模型性能的工作,(2)通过介入模型培训提高模型性能,(3)系统的设计独立于循环的设计。使用上述分类,我们总结了该领域的主要方法;随着他们的技术优势/弱点以及自然语言处理,计算机愿景等的简单分类和讨论。此外,我们提供了一些开放的挑战和机遇。本调查打算为人类循环提供高级别的摘要,并激励有兴趣的读者,以考虑设计有效的循环解决方案的方法。
translated by 谷歌翻译
Jitendra Malik once said, "Supervision is the opium of the AI researcher". Most deep learning techniques heavily rely on extreme amounts of human labels to work effectively. In today's world, the rate of data creation greatly surpasses the rate of data annotation. Full reliance on human annotations is just a temporary means to solve current closed problems in AI. In reality, only a tiny fraction of data is annotated. Annotation Efficient Learning (AEL) is a study of algorithms to train models effectively with fewer annotations. To thrive in AEL environments, we need deep learning techniques that rely less on manual annotations (e.g., image, bounding-box, and per-pixel labels), but learn useful information from unlabeled data. In this thesis, we explore five different techniques for handling AEL.
translated by 谷歌翻译
从医用试剂染色图像中分割牙齿斑块为诊断和确定随访治疗计划提供了宝贵的信息。但是,准确的牙菌斑分割是一项具有挑战性的任务,需要识别牙齿和牙齿斑块受到语义腔区域的影响(即,在牙齿和牙齿斑块之间的边界区域中存在困惑的边界)以及实例形状的复杂变化,这些变化均未完全解决。现有方法。因此,我们提出了一个语义分解网络(SDNET),该网络介绍了两个单任务分支,以分别解决牙齿和牙齿斑块的分割,并设计了其他约束,以学习每个分支的特定类别特征,从而促进语义分解并改善该类别的特征牙齿分割的性能。具体而言,SDNET以分裂方式学习了两个单独的分割分支和牙齿的牙齿,以解除它们之间的纠缠关系。指定类别的每个分支都倾向于产生准确的分割。为了帮助这两个分支更好地关注特定类别的特征,进一步提出了两个约束模块:1)通过最大化不同类别表示之间的距离来学习判别特征表示,以了解判别特征表示形式,以减少减少负面影响关于特征提取的语义腔区域; 2)结构约束模块(SCM)通过监督边界感知的几何约束提供完整的结构信息,以提供各种形状的牙菌斑。此外,我们构建了一个大规模的开源染色牙菌斑分割数据集(SDPSEG),该数据集为牙齿和牙齿提供高质量的注释。 SDPSEG数据集的实验结果显示SDNET达到了最新的性能。
translated by 谷歌翻译
神经网络在医疗图像分割任务上的成功通常依赖于大型标记的数据集用于模型培训。但是,由于数据共享和隐私问题,获取和手动标记大型医疗图像集是资源密集的,昂贵的,有时是不切实际的。为了应对这一挑战,我们提出了一个通用的对抗数据增强框架Advchain,旨在提高培训数据对医疗图像分割任务的多样性和有效性。 AdvChain通过动态数据增强来增强数据,从而产生随机链接的光线像和几何转换,以类似于现实而又具有挑战性的成像变化以扩展训练数据。通过在培训期间共同优化数据增强模型和分割网络,可以生成具有挑战性的示例,以增强下游任务的网络可推广性。所提出的对抗数据增强不依赖生成网络,可以用作通用分割网络中的插件模块。它在计算上是有效的,适用于低声监督和半监督学习。我们在两个MR图像分割任务上分析和评估该方法:心脏分割和前列腺分割具有有限的标记数据。结果表明,所提出的方法可以减轻对标记数据的需求,同时提高模型泛化能力,表明其在医学成像应用中的实际价值。
translated by 谷歌翻译
本文为半监督医学图像分割提供了一个简单而有效的两阶段框架。我们的主要洞察力是探索用标记和未标记的(即伪标记)图像的特征表示学习,以增强分段性能。在第一阶段,我们介绍了一种炼层的不确定感知方法,即Aua,以改善产生高质量伪标签的分割性能。考虑到医学图像的固有歧义,Aua自适应地规范了具有低歧义的图像的一致性。为了提高代表学习,我们提出了一种舞台适应性的对比学习方法,包括边界意识的对比损失,以规范第一阶段中标记的图像,并在第二阶段中的原型感知对比损失优化标记和伪标记的图像阶段。边界意识的对比损失仅优化分段边界周围的像素,以降低计算成本。原型感知对比损失通过为每个类构建质心来充分利用标记的图像和伪标记的图像,以减少对比较的计算成本。我们的方法在两个公共医学图像分割基准上实现了最佳结果。值得注意的是,我们的方法在结肠肿瘤分割的骰子上以5.7%的骰子依赖于只有5%标记的图像而表现出5.7%。
translated by 谷歌翻译
深度神经网络通常需要准确和大量注释,以在医学图像分割中实现出色的性能。单次分割和弱监督学习是有前途的研究方向,即通过仅从一个注释图像学习新类并利用粗标签来降低标签努力。以前的作品通常未能利用解剖结构并遭受阶级不平衡和低对比度问题。因此,我们为3D医学图像分割的创新框架提供了一次性和弱监督的设置。首先,提出了一种传播重建网络,以基于不同人体中的解剖模式类似的假设将来自注释体积的划痕投射到未标记的3D图像。然后,双级功能去噪模块旨在基于解剖结构和像素级别来改进涂鸦。在将涂鸦扩展到伪掩码后,我们可以使用嘈杂的标签培训策略培训新课程的分段模型。一个腹部的实验和一个头部和颈部CT数据集显示所提出的方法对最先进的方法获得显着改善,即使在严重的阶级不平衡和低对比度下也能够稳健地执行。
translated by 谷歌翻译
Medical image segmentation (MIS) is essential for supporting disease diagnosis and treatment effect assessment. Despite considerable advances in artificial intelligence (AI) for MIS, clinicians remain skeptical of its utility, maintaining low confidence in such black box systems, with this problem being exacerbated by low generalization for out-of-distribution (OOD) data. To move towards effective clinical utilization, we propose a foundation model named EvidenceCap, which makes the box transparent in a quantifiable way by uncertainty estimation. EvidenceCap not only makes AI visible in regions of uncertainty and OOD data, but also enhances the reliability, robustness, and computational efficiency of MIS. Uncertainty is modeled explicitly through subjective logic theory to gather strong evidence from features. We show the effectiveness of EvidenceCap in three segmentation datasets and apply it to the clinic. Our work sheds light on clinical safe applications and explainable AI, and can contribute towards trustworthiness in the medical domain.
translated by 谷歌翻译