瀑布推荐系统(RS)是移动应用程序中RS的流行形式,是推荐的项目流,这些项目由连续页面组成,可以通过滚动浏览。在Waterfall RS中,当用户完成浏览页面时,Edge(例如,手机)将向Cloud Server发送请求,以获取新的建议页面,称为分页请求机制。 RSS通常将大量项目放入一页中,以减少众多分页请求中的过度资源消耗,但是,这将降低RSS根据用户的实时兴趣及时续订建议的能力,并导致贫穷的用户。经验。直观地,在页面内插入其他请求以更新频率的建议可以减轻问题。但是,以前的尝试,包括非自适应策略(例如,统一插入请求)最终会导致资源过度消费。为此,我们设想了一项名为智能请求策略设计(IRSD)的Edge Intelligence的新学习任务。它旨在通过根据用户的实时意图确定请求插入的适当情况来提高瀑布RSS的有效性。此外,我们提出了一种新的自适应请求插入策略的范式,名为基于Uplift的On-Ending Smart请求框架(AdareQuest)。 AdareQuest 1)通过将实时行为与基于基于注意力的神经网络相匹配的历史兴趣来捕获用户意图的动态变化。 2)估计根据因果推理插入的请求带来的用户购买的反事实提升。 3)通过在在线资源约束下最大化效用功能来确定最终请求插入策略。我们在离线数据集和在线A/B测试上进行了广泛的实验,以验证AdareQuest的有效性。
translated by 谷歌翻译
机上的机器学习使本地客户端推荐模型的轻量级部署可以减轻基于云的推荐人的负担,并同时结合了更多实时用户功能。然而,考虑到其强大的模型能力以及从十亿级项目库中产生的有效候选人,该行业的基于云的建议仍然非常重要。以前的尝试将两种范式的优点整合起来主要诉诸于顺序机制,该机制在基于云的建议之上构建了在设备上的推荐人。但是,当用户兴趣发生巨大变化时,这种设计是不灵活的:设备模型被有限的项目缓存粘住,而基于大型项目池的基于云的推荐则没有新的重新汇总反馈。为了克服这个问题,我们提出了一个元控制器,以动态管理推荐装置推荐人与基于云的推荐人之间的协作,并从因果角度引入一种新颖的有效样本构造,以解决元控制者的数据集缺失问题。在反事实样本和扩展培训的基础上,在工业推荐方案中进行的广泛实验显示了在设备云协作中Meta控制器的承诺。
translated by 谷歌翻译
关于点击率(CTR)预测的最新研究通过对更长的用户行为序列进行建模,已达到新的水平。除其他外,两阶段的方法是用于工业应用的最先进的解决方案(SOTA)。两阶段方法首先训练检索模型,以事先截断长行为序列,然后使用截短序列训练CTR模型。但是,检索模型和CTR模型是分别训练的。因此,CTR模型中检索到的子序列不准确,它降低了最终性能。在本文中,我们提出了一个端到端范式来建模长行为序列,与现有模型相比,该序列能够实现卓越的性能以及出色的成本效益。我们的贡献是三倍:首先,我们提出了一个名为ETA-NET的基于哈希的有效目标(TA)网络,以基于低成本的位置操作来启用端到端的用户行为检索。提出的ETA-NET可以通过顺序数据建模的数量级来降低标准TA的复杂性。其次,我们建议将通用系统体系结构作为一种可行的解决方案,用于在工业系统上部署ETA-NET。特别是,与SOTA两阶段方法相比,ETA-NET已部署在TAOBAO的推荐系统上,并在CTR上带来了1.8%的升降机和3.1%的升降机(GMV)。第三,我们在离线数据集和在线A/B测试上进行了广泛的实验。结果证明,在CTR预测性能和在线成本效益方面,所提出的模型大大优于现有的CTR模型。 ETA-NET现在为TAOBAO的主要流量提供服务,每天为数亿用户提供服务。
translated by 谷歌翻译
事实证明,丰富的用户行为数据对于点击率(CTR)预测应用程序具有很高的价值,尤其是在工业推荐,搜索或广告系统中。但是,由于在线服务时间的严格要求,现实世界系统不仅可以充分利用长期用户行为。大多数以前的作品都采用基于检索的策略,在此策略中,首先检索了少数用户行为以进行后续注意。但是,基于检索的方法是最佳的,会造成或多或少的信息损失,并且很难平衡检索算法的有效性和效率。在本文中,我们提出了SDIM(基于采样的深度兴趣建模),这是一种简单但有效的基于采样的端到端方法,用于建模长期用户行为。我们从多个哈希功能中采样,以生成候选项目和用户行为序列中的每个项目的哈希签名,并通过直接收集与具有相同哈希签名的候选项目相关的行为项来获得用户兴趣。我们在理论上和实验上表明,所提出的方法在基于标准的基于注意力的模型上对长期用户行为进行建模,同时更快。我们还介绍了系统中SDIM的部署。具体而言,我们通过设计一个名为BSE(行为序列编码)的单独模块(行为序列编码),将行为序列哈希(这是最耗时的部分)解脱出最耗时的部分。 BSE对于CTR服务器是无延迟的,使我们能够建模极长的用户行为。进行离线和在线实验,以证明SDIM的有效性。 SDIM现在已在线部署在Meituan应用程序的搜索系统中。
translated by 谷歌翻译
在过去的几年中,短视频在淘宝等电子商务平台上见证了迅速的增长。为了确保内容的新鲜感,平台需要每天发布大量新视频,从而使传统的点击率(CTR)预测方法遇到了该项目冷启动问题。在本文中,我们提出了一种有效的图形引导功能传输系统的礼物,以完全利用加热视频的丰富信息,以补偿冷启动的视频。具体而言,我们建立了一个异质图,其中包含物理和语义链接,以指导从热视频到冷启动视频的功能传输过程。物理链接代表明确的关系,而语义链接衡量了两个视频的多模式表示的接近性。我们精心设计功能传输功能,以使图表上不同Metapaths的不同类型的转移功能(例如,ID表示和历史统计)。我们在大型现实世界数据集上进行了广泛的实验,结果表明,我们的礼品系统的表现明显优于SOTA方法,并在TAOBAO APP的主页上为CTR带来了6.82%的提升。
translated by 谷歌翻译
在点击率(CTR)预测方案中,用户的顺序行为很好地利用来捕获最近文献中的用户兴趣。然而,尽管正在广泛研究,但这些顺序方法仍然存在三个限制。首先,现有方法主要利用对用户行为的注意,这并不总是适用于CTR预测,因为用户经常点击与任何历史行为无关的新产品。其次,在真实场景中,很久以前存在许多具有运营的用户,但最近的次数相对不活跃。因此,难以通过早期行为精确地捕获用户的当前偏好。第三,不同特征子空间中用户历史行为的多个表示主要被忽略。为了解决这些问题,我们提出了一种多互动关注网络(Mian),全面提取各种细粒度特征之间的潜在关系(例如,性别,年龄和用户档案)。具体而言,MIAN包含多交互式层(MIL),其集成了三个本地交互模块,通过顺序行为捕获用户偏好的多个表示,并同时利用细粒度的用户特定的以及上下文信息。此外,我们设计了一个全局交互模块(GIM)来学习高阶交互,平衡多个功能的不同影响。最后,脱机实验结果来自三个数据集,以及在大型推荐系统中的在线A / B测试,展示了我们提出的方法的有效性。
translated by 谷歌翻译
推荐系统通常会从各种用户行为中学习用户兴趣,包括点击和点击后行为(例如,喜欢和喜欢)。但是,这些行为不可避免地表现出受欢迎程度的偏见,从而导致一些不公平的问题:1)对于具有相似质量,更受欢迎的物品的物品会获得更多的曝光; 2)更糟糕的是,受欢迎程度较低的流行物品可能会获得更多的曝光率。现有关于缓解流行偏见的工作会盲目消除偏见,通常忽略项目质量的影响。我们认为,不同用户行为(例如,转换率)之间的关系实际上反映了项目质量。因此,为了处理不公平的问题,我们建议通过考虑多种用户行为来减轻流行性偏见。在这项工作中,我们研究了多行为推荐中相互作用生成过程背后的因果关系。具体来说,我们发现:1)项目受欢迎程度是暴露的项目和用户的点击交互之间的混杂因素,导致第一个不公平; 2)一些隐藏的混杂因素(例如,项目生产者的声誉)影响了项目的流行和质量,导致第二次不公平。为了减轻这些混杂问题,我们提出了一个因果框架来估计因果效应,该因果效应利用后门调整以阻止混杂因素引起的后门路径。在推论阶段,我们消除了受欢迎程度的负面影响,并利用质量的良好效果进行推荐。在两个现实世界数据集上的实验验证了我们提出的框架的有效性,这在不牺牲建议准确性的情况下增强了公平性。
translated by 谷歌翻译
因果图作为因果建模的有效和强大的工具,通常被假定为有向的无环图(DAG)。但是,推荐系统通常涉及反馈循环,该反馈循环定义为推荐项目的循环过程,将用户反馈纳入模型更新以及重复该过程。结果,重要的是将循环纳入因果图中,以准确地对推荐系统进行动态和迭代数据生成过程。但是,反馈回路并不总是有益的,因为随着时间的流逝,它们可能会鼓励越来越狭窄的内容暴露,如果无人看管的话,可能会导致回声室。结果,重要的是要了解何时会导致Echo Chambers以及如何减轻回声室而不会损害建议性能。在本文中,我们设计了一个带有循环的因果图,以描述推荐的动态过程。然后,我们采取马尔可夫工艺来分析回声室的数学特性,例如导致回声腔的条件。受理论分析的启发,我们提出了一个动态的因果协作过滤($ \ partial $ ccf)模型,该模型估算了用户基于后门调整的项目的干预后偏好,并通过反事实推理减轻了Echo Echo Chamber。在现实世界数据集上进行了多个实验,结果表明,我们的框架可以比其他最先进的框架更好地减轻回声室,同时通过基本建议模型实现可比的建议性能。
translated by 谷歌翻译
A large number of empirical studies on applying self-attention models in the domain of recommender systems are based on offline evaluation and metrics computed on standardized datasets, without insights on how these models perform in real life scenarios. Moreover, many of them do not consider information such as item and customer metadata, although deep-learning recommenders live up to their full potential only when numerous features of heterogeneous types are included. Also, typically recommendation models are designed to serve well only a single use case, which increases modeling complexity and maintenance costs, and may lead to inconsistent customer experience. In this work, we present a reusable Attention-based Fashion Recommendation Algorithm (AFRA), that utilizes various interaction types with different fashion entities such as items (e.g., shirt), outfits and influencers, and their heterogeneous features. Moreover, we leverage temporal and contextual information to address both short and long-term customer preferences. We show its effectiveness on outfit recommendation use cases, in particular: 1) personalized ranked feed; 2) outfit recommendations by style; 3) similar item recommendation and 4) in-session recommendations inspired by most recent customer actions. We present both offline and online experimental results demonstrating substantial improvements in customer retention and engagement.
translated by 谷歌翻译
推荐系统(RS)是一个重要的在线应用程序,每天都会影响数十亿个用户。主流RS排名框架由两个部分组成:多任务学习模型(MTL),该模型可预测各种用户反馈,即点击,喜欢,分享和多任务融合模型(MTF),该模型(MTF)结合了多任务就用户满意度而言,输出分为最终排名得分。关于融合模型的研究并不多,尽管它对最终建议作为排名的最后一个关键过程有很大的影响。为了优化长期用户满意度,而不是贪婪地获得即时回报,我们将MTF任务作为Markov决策过程(MDP),并在推荐会话中提出,并建议基于批处理加固学习(RL)基于多任务融合框架(BATCHRL-MTF)包括批处理RL框架和在线探索。前者利用批处理RL从固定的批处理数据离线学习最佳推荐政策,以达到长期用户满意度,而后者则探索了潜在的高价值动作在线,以突破本地最佳难题。通过对用户行为的全面调查,我们通过从用户粘性和用户活动性的两个方面的微妙启发式方法对用户满意度进行了建模。最后,我们对十亿个样本级别的现实数据集进行了广泛的实验,以显示模型的有效性。我们建议保守的离线政策估计器(保守 - 访问器)来测试我们的模型离线。此外,我们在真实推荐环境中进行在线实验,以比较不同模型的性能。作为成功在MTF任务中应用的少数批次RL研究之一,我们的模型也已部署在一个大规模的工业短视频平台上,为数亿用户提供服务。
translated by 谷歌翻译
工业推荐系统通常提出包含来自多个子系统的结果的混合列表。实际上,每个子系统都使用自己的反馈数据进行了优化,以避免不同子系统之间的干扰。但是,我们认为,由于\ textit {数据稀疏},此类数据使用可能会导致次优的在线性能。为了减轻此问题,我们建议从包含网络尺度和长期印象数据的\ textit {super-domain}中提取知识,并进一步协助在线推荐任务(下游任务)。为此,我们提出了一个新颖的工业\ textbf {k} nowl \ textbf {e} dge \ textbf {e} xtraction和\ textbf {p} lugging(\ textbf {keep})框架,这是一个两阶段的框架其中包括1)超级域上有监督的预训练知识提取模块,以及2)将提取的知识纳入下游模型的插件网络。这使得对在线推荐的逐步培训变得友好。此外,我们设计了一种有效的经验方法,用于在大规模工业系统中实施Keep时保持和介绍我们的动手经验。在两个现实世界数据集上进行的实验表明,保持可以实现有希望的结果。值得注意的是,Keep也已部署在阿里巴巴的展示广告系统上,带来了$+5.4 \%$ CTR和$+4.7 \%\%$ rpm的提升。
translated by 谷歌翻译
Current advances in recommender systems have been remarkably successful in optimizing immediate engagement. However, long-term user engagement, a more desirable performance metric, remains difficult to improve. Meanwhile, recent reinforcement learning (RL) algorithms have shown their effectiveness in a variety of long-term goal optimization tasks. For this reason, RL is widely considered as a promising framework for optimizing long-term user engagement in recommendation. Despite being a promising approach, the application of RL heavily relies on well-designed rewards, but designing rewards related to long-term user engagement is quite difficult. To mitigate the problem, we propose a novel paradigm, Preference-based Recommender systems (PrefRec), which allows RL recommender systems to learn from preferences about users' historical behaviors rather than explicitly defined rewards. Such preferences are easily accessible through techniques such as crowdsourcing, as they do not require any expert knowledge. With PrefRec, we can fully exploit the advantages of RL in optimizing long-term goals, while avoiding complex reward engineering. PrefRec uses the preferences to automatically train a reward function in an end-to-end manner. The reward function is then used to generate learning signals to train the recommendation policy. Furthermore, we design an effective optimization method for PrefRec, which uses an additional value function, expectile regression and reward model pre-training to improve the performance. Extensive experiments are conducted on a variety of long-term user engagement optimization tasks. The results show that PrefRec significantly outperforms previous state-of-the-art methods in all the tasks.
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
随着网络技术的快速发展和网络设备的快速增长,数据吞吐量也大大增加。为了解决蜂窝网络中回程瓶颈的问题并满足人们对延迟的要求,基于预测的结果,网络体系结构等网络体系结构旨在主动将有限的流行内容保持在网络边缘。同时,内容(例如,深度神经网络模型,与Wikipedia类似知识库)和用户之间的相互作用可以视为动态二分图。在本文中,为了最大程度地提高缓存命中率,我们利用有效的动态图神经网络(DGNN)共同学习嵌入了两部分图中的结构和时间模式。此外,为了更深入地了解不断发展的图表中的动态,我们提出了一个基于信息时代(AOI)的注意机制,以提取有价值的历史信息,同时避免消息陈旧的问题。结合了上述预测模型,我们还开发了一种缓存选择算法,以根据预测结果做出缓存决策。广泛的结果表明,与两个现实世界数据集中的其他最先进的方案相比,我们的模型可以获得更高的预测准确性。命中率的结果进一步验证了基于我们提出的模型而不是其他传统方式的缓存政策的优势。
translated by 谷歌翻译
随着强化学习(RL)的最新流行率,在推荐平台(例如电子商务和新闻提要网站)中利用RL来利用RL进行广泛的兴趣。为了获得更好的分配,将最近基于RL的广告分配方法的输入从点单项目升级到列表项目的布置。但是,这也导致了国家行动对的高维空间,因此很难以良好的概括能力学习列表表示。这进一步阻碍了RL药物的探索,并导致样本效率差。为了解决这个问题,我们提出了一种基于RL的新方法,用于广告分配,该方法通过利用Meituan食品交付平台上的任务特定信号来学习更好的列表表示形式。具体而言,我们根据对ADS分配的先前领域知识分别提出基于重建,预测和对比度学习的三个不同的辅助任务。我们在Meituan食品输送平台上进行了广泛的实验,以评估拟议的辅助任务的有效性。离线和在线实验结果都表明,与最先进的基线相比,提出的方法可以学习更好的列表表示形式,并获得更高的平台收入。
translated by 谷歌翻译
在信息爆炸的时代,推荐系统通过促进内容探索在人们的日常生活中起着重要作用。众所周知,用户的活动性,即行为数量,倾向于遵循长尾分布,大多数用户的积极性低。在实践中,我们观察到,在联合培训后,尾巴用户的质量推荐率明显低于首席用户。我们进一步确定,由于数据有限,因此在尾巴用户上训练的模型仍然取得了较低的结果。尽管长尾分布在推荐系统中无处不在,但在研究和行业中,提高尾巴用户的推荐性能仍然仍然是挑战。直接应用长尾分配的相关方法可能有可能伤害首席用户的经验,这是不起作用的,因为一小部分具有高积极性的首席用户贡献了平台收入的一部分。在本文中,我们提出了一种新颖的方法,可以显着提高尾巴用户的建议性能,同时至少在基本模型上为首席用户提供至少可比的性能。这种方法的本质是一种新颖的梯度聚合技术,该技术将所有用户共享的常识知识分为主干模型,然后为Head用户和Tail用户个性化提供单独的插件预测网络。至于常识学习,我们利用因果关系理论的向后调整来消除梯度估计,从而掩盖了混杂因素的骨干训练,即用户的积极性。我们对两个公共建议基准数据集和一个从支撑台平台收集的大规模工业数据集进行了广泛的实验。实证研究验证了我们方法的合理性和有效性。
translated by 谷歌翻译
预测短期交互会话的下一个交互是基于会话的推荐中的一个具有挑战性的任务。几乎所有现有的作品都依赖于项目转换模式,并在建模用户偏好时忽略用户历史会话的影响,这通常会导致非个性化推荐。此外,基于现有的个性化会话的推荐人仅基于当前用户的会话捕获用户首选项,而是忽略来自其他用户的历史会话的有用物品转换模式。为了解决这些问题,我们提出了一种新颖的异构全球图形神经网络(HG-GNN)以以微妙的方式利用所有会话的物品过渡,以便更好地推断用户偏好与当前和历史会话。为了有效利用所有用户的所有会话转换,我们提出了一种新的异构全局图,该图包含会话,用户项交互和全局共同发生项目的项目转换。此外,为了综合地从会话中捕获用户偏好,我们建议通过两个图形增强偏好编码器学习来自全局图的两个用户表示。具体地,我们在异构全球图上设计一种新的异构图形神经网络(HGNN),以了解具有丰富语义的长期用户偏好和项目表示。基于HGNN,我们提出了当前偏好编码器和历史偏好编码器,分别捕获来自当前和历史会话的不同级别的用户偏好。为实现个性化建议,我们将用户当前偏好和历史利益的表示集成到生成最终用户首选项表示。三个真实数据集的广泛实验结果表明,我们的模型优于其他最先进的方法。
translated by 谷歌翻译
在隐性反馈推荐中,将短期偏好纳入推荐系统近年来引起了不断的关注。但是,在历史交互中的意外行为,如偶然点击一些物品,也不能反映用户固有的偏好。现有研究未能模拟意外行为的影响,从而实现劣等的推荐性能。在本文中,我们提出了一种多偏好模型(MPM)来消除意外行为的影响。 MPM首先通过细粒度的偏好模块从最近的历史交互中提取用户的即时偏好。然后,培训意外行为检测器以判断这些即时偏好是否由意外行为偏置。我们还将用户的一般偏好集成在MPM中。最后,执行输出模块以消除意外行为的影响,并集成所有信息以进行最终推荐。我们在电影的两个数据集和电子零售中进行广泛的实验,展示了我们在最先进的方法上的模型的显着改进。实验结果表明,MPM在HR @ 10和NDCG @ 10中获得了大规模的改善,平均与斯trec模型相比相对增加了3.643%和4.107%。我们在https://github.com/chenjie04/mpm/发布我们的代码。
translated by 谷歌翻译
跨域冷启动推荐是推荐系统越来越新兴的问题。现有的作品主要专注于解决跨域用户推荐或冷启动内容推荐。但是,当新域在早期发展时,它具有类似于源域的潜在用户,但互动较少。从源域中学习用户的偏好并将其转移到目标域中是至关重要的,特别是在具有有限用户反馈的新到达内容上。为了弥合这一差距,我们提出了一个自训练的跨域用户偏好学习(夫妻)框架,针对具有各种语义标签的冷启动推荐,例如视频的项目或视频类型。更具体地,我们考虑三个级别的偏好,包括用户历史,用户内容和用户组提供可靠的推荐。利用由域感知顺序模型表示的用户历史,将频率编码器应用于用于用户内容偏好学习的底层标记。然后,建议具有正交节点表示的分层存储器树以进一步概括域域的用户组偏好。整个框架以一种对比的方式更新,以先进先出(FIFO)队列获得更具独特的表示。两个数据集的广泛实验展示了用户和内容冷启动情况的夫妇效率。通过部署在线A / B一周测试,我们表明夫妇的点击率(CTR)优于淘宝应用程序的其他基线。现在该方法在线为跨域冷微视频推荐服务。
translated by 谷歌翻译
这项调查旨在全面概述用户与推荐系统之间的相互作用和M&S应用程序之间的相互作用的最新趋势(M&S),以改善工业推荐引擎的性能。我们从实施模拟器的框架开发的动机开始,以及它们用于培训和测试不同类型(包括强化学习)的推荐系统的使用。此外,我们根据现有模拟器的功能,认可和工业有效性提供了新的一致分类,并总结了研究文献中发现的模拟器。除其他事情外,我们还讨论了模拟器的构建块:合成数据(用户,项目,用户项目响应)的生成,用于模拟质量评估的方法和数据集(包括监视的方法)和/或关闭可能的模拟到现实差距),以及用于汇总实验仿真结果的方法。最后,这项调查考虑了该领域的新主题和开放问题。
translated by 谷歌翻译