本研究提出了一种具有动态障碍物和不均匀地形的部分可观察环境中的BipeDal运动的安全任务和运动计划(夯实)的分层综合框架。高级任务规划师采用线性时间逻辑(LTL),用于机器人及其环境之间的反应游戏合成,并为导航安全和任务完成提供正式保证。为了解决环境部分可观察性,在高级导航计划者采用信仰抽象,以估计动态障碍的位置。因此,合成的动作规划器向中级运动规划器发送一组运动动作,同时基于运动过程的阶数模型(ROM)结合从安全定理提取的安全机置规范。运动计划程序采用ROM设计安全标准和采样算法,以生成准确跟踪高级动作的非周期性运动计划。为了解决外部扰动,本研究还调查了关键帧运动状态的安全顺序组成,通过可达性分析实现了对外部扰动的强大转变。最终插值一组基于ROM的超参数,以设计由轨迹优化生成的全身运动机器,并验证基于ROM的可行部署,以敏捷机器人设计的20多个自由的Cassie机器人。
translated by 谷歌翻译
基于联系的决策和规划方法越来越重要,无法为腿机器人提供更高的自主性。源自符号系统的正式合成方法具有巨大的推理潜力,了解高级机器决策,并以正确的担保实现复杂的机动行动。本研究迈出了一种正式设计由受约束和动态变化环境中的任务规划和控制全身动态运动行为的架构组成的架构。在高级别,我们在多肢运动策划器和其动态环境之间制定了两个玩家时间逻辑游戏,以综合提供符号机置操作的获胜策略。这些运动动作满足时间逻辑片段中的所需高级任务规范。这些操作被发送到强大的有限转换系统,该过渡系统合成了满足状态可达性限制的运动控制器。该控制器进一步通过低级运动规划器执行,所述低级运动计划产生可行的机器人轨迹。我们构建一组动态运动模型,可用于腿机器人,作为用于处理各种环境事件的模板库。我们设计了一种重新调整策略,考虑到突然的环境变化或大状态干扰,以增加所产生的机器行为的鲁棒性。我们正式证明分层运动框架的正确性,保证了运动规划层的强大实现。在各种环境中的反应运动行为模拟表明我们的框架具有潜在的智能机置行为的理论基础。
translated by 谷歌翻译
在粗糙的地形上的动态运动需要准确的脚部放置,避免碰撞以及系统的动态不足的计划。在存在不完美且常常不完整的感知信息的情况下,可靠地优化此类动作和互动是具有挑战性的。我们提出了一个完整的感知,计划和控制管道,可以实时优化机器人所有自由度的动作。为了减轻地形所带来的数值挑战,凸出不平等约束的顺序被提取为立足性可行性的局部近似值,并嵌入到在线模型预测控制器中。每个高程映射预先计算了步骤性分类,平面分割和签名的距离场,以最大程度地减少优化过程中的计算工作。多次射击,实时迭代和基于滤波器的线路搜索的组合用于可靠地以高速率解决该法式问题。我们在模拟中的间隙,斜率和踏上石头的情况下验证了所提出的方法,并在Anymal四倍的平台上进行实验,从而实现了最新的动态攀登。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
在本文中,我们介绍了一个高级控制器合成框架,该框架使异构代理团队能够相互协助解决运行时出现的环境冲突。这种冲突解决方法是基于基于时间逻辑的反应性综合,以确保在特定环境假设下的安全性和任务完成。在异质的多机构系统中,每个代理都有望完成自己的任务,以服务全球团队的目标。但是,在运行时,代理商可能会遇到未建模的障碍物(例如门或墙壁),以阻止其完成自己的任务。为了解决这个问题,我们利用其他异质代理解决障碍的能力。提出了一个控制器框架,以在检测到这种情况时将适当的障碍物解决到所需目标的能力重定向。一组涉及双足机器人数字和四轮驱动器的案例研究用于评估行动中的控制器性能。此外,我们在物理多代理机器人系统上实施了拟议的框架,以证明其对现实世界应用的生存能力。
translated by 谷歌翻译
用多腿机器人的动态跳跃在规划和控制方面提出了一个具有挑战性的问题。制定跳转优化以允许快速在线执行难;有效地使用这种能够生成长地平轨迹的能力进一步复杂化问题。在这项工作中,我们提出了一种新的分层规划框架来解决这个问题。我们首先制定了一个实时的轨道轨迹优化,用于执行全向跳跃。然后,我们将该优化的结果嵌入到低维跳转可行性分类器中。该分类器由高级策划器利用,以产生动态可行的路径,并且对硬件轨迹实现中的可变性也很稳健。我们在迷你猎豹视觉上部署我们的框架,展示了机器人的生成和执行可靠的目标导向路径,这些路径涉及前进,横向和旋转跳跃到比机器人的标称臀部高度高1.35倍。通过全向跳跃计划的能力极大地扩展了机器人相对于限制跳跃到矢状或前平面的规划者的移动性。
translated by 谷歌翻译
在本文中,我们全能地提出了一种基于混合线性倒置的方法(H唇),用于合成和稳定3D足底双模行走,重点是彻底的硬件实现。提出了H-唇缘以捕获机器人行走的欠置和致动部分的基本组成部分。然后基于H唇直接合成机器人行走步态。我们全面地表征了H唇的周期性轨道,并通过其步骤 - 步骤(S2S)动力学可证明步骤稳定,然后用于近似于质量中心的水平状态的S2S动态(COM)机器人散步。近似设施基于H唇的步进控制器,提供所需的步长,以稳定机器人行走。通过实现所需的步骤尺寸,机器人实现了动态且稳定的行走。在欠扰动的BipeDal机器人Cassie的模拟和实验中完全评估了该方法,其展示了具有高通用和鲁棒性的动态行走行为。
translated by 谷歌翻译
尽管对Bipeds的运动稳定性进行了广泛的研究,但它们仍然缺乏在湿滑表面上缺乏干扰的应对能力。在本文中,关于表面摩擦限制,开发了一种用于稳定其矢状平面中的双模运动的新型控制器。通过考虑到表面稳定趋势的表面的物理限制,实现了更先进的可靠性水平,从而提供更高的功能,例如在低摩擦表面上推挽恢复,并防止稳定剂过度反应。基于离散的事件的策略包括修改每个脚步开头的步长和时间段,以便在考虑表面摩擦限制作为防止滑动的约束的同时重新建立稳定性必要条件。调整脚步以防止面对外部干扰的滑动被认为是保持稳定性的新策略,与人类反应非常相似。开发方法包括利用基本数学操作来获取控制输入的粗闭式解决方案,允许在收敛和计算成本之间达到平衡,即使具有适度的计算硬件,即使具有实时操作也非常适合实时操作。执行几种数值模拟,包括在低摩擦表面上的不同栅极之间的推挽恢复和切换,以证明所提出的控制器的有效性。在与人体步态经验相关的情况下,结果还揭示了一些有利于稳定性的物理方面以及在Gaits之间切换的事实,以降低面对不同条件的落地的风险。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
这项工作提出了利用对机器人周围环境的逐步改善的象征感知知识的一步,以证明适用于自动驾驶问题的正确反应性控制合成。结合了运动控制和信息收集的抽象模型,我们表明假设保证规范(线性时间逻辑的子类)可用于定义和解决谨慎计划的流量规则。我们提出了一种新颖的表示,称为符号改进树,以捕获有关环境的增量知识,并体现了各种符号感知输入之间的关系。利用增量知识来合成机器人的验证反应性计划。案例研究表明,即使在部分遮挡的环境中,拟议方法在合成控制输入方面的疗效。
translated by 谷歌翻译
本文介绍了一个混合在线的部分可观察到的马尔可夫决策过程(POMDP)计划系统,该系统在存在环境中其他代理商引入的多模式不确定性的情况下解决了自主导航的问题。作为一个特别的例子,我们考虑了密集的行人和障碍物中的自主航行问题。该问题的流行方法首先使用完整的计划者(例如,混合A*)生成一条路径,具有对不确定性的临时假设,然后使用基于在线树的POMDP求解器来解决问题的不确定性,并控制问题的有限方面(即沿着路径的速度)。我们提出了一种更有能力和响应的实时方法,使POMDP规划师能够控制更多的自由度(例如,速度和标题),以实现更灵活,更有效的解决方案。这种修改大大扩展了POMDP规划师必须推荐的国家空间区域,从而大大提高了在实时控制提供的有限计算预算中找到有效的推出政策的重要性。我们的关键见解是使用多Query运动计划技术(例如,概率路线图或快速行进方法)作为先验,以快速生成在有限的地平线搜索中POMDP规划树可能达到的每个状态的高效推出政策。我们提出的方法产生的轨迹比以前的方法更安全,更有效,即使在较长的计划范围内密集拥挤的动态环境中。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
本文在具有部分未知语义的环境中解决了多机器人规划问题。假设环境具有已知的几何结构(例如,墙壁),并且由具有不确定位置和类的静态标记的地标占用。这种建模方法引发了语义SLAM算法生成的不确定语义地图。我们的目标是为配备有嘈杂感知系统的机器人设计控制策略,以便他们可以完成全局时间逻辑规范捕获的协同任务。为了指定考虑环境和感知不确定性的任务,我们采用了线性时间逻辑(LTL)的片段,称为CO-Safe LTL,定义了基于感知的原子谓性建模概率满意度要求。基于感知的LTL规划问题产生了通过新型采样的算法解决的最佳控制问题,它产生了在线更新的开环控制策略,以适应连续学习的语义地图。我们提供广泛的实验,以证明拟议的规划架构的效率。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
Despite recent progress on trajectory planning of multiple robots and path planning of a single tethered robot, planning of multiple tethered robots to reach their individual targets without entanglements remains a challenging problem. In this paper, we present a complete approach to address this problem. Firstly, we propose a multi-robot tether-aware representation of homotopy, using which we can efficiently evaluate the feasibility and safety of a potential path in terms of (1) the cable length required to reach a target following the path, and (2) the risk of entanglements with the cables of other robots. Then, the proposed representation is applied in a decentralized and online planning framework that includes a graph-based kinodynamic trajectory finder and an optimization-based trajectory refinement, to generate entanglement-free, collision-free and dynamically feasible trajectories. The efficiency of the proposed homotopy representation is compared against existing single and multiple tethered robot planning approaches. Simulations with up to 8 UAVs show the effectiveness of the approach in entanglement prevention and its real-time capabilities. Flight experiments using 3 tethered UAVs verify the practicality of the presented approach.
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
创建复杂机器人行为的一种典型方法是组成原子控制器或技能,以使所产生的行为满足高级任务;但是,当无法使用一组技能完成任务时,很难知道如何修改技能以使任务成为可能。我们提出了一种将符号维修与身体可行性检查和实现相结合的方法,以自动修改现有技能,以便机器人可以执行以前不可行的任务。我们在线性时间逻辑(LTL)公式中编码机器人技能,以捕获安全性任务的安全限制和目标。此外,我们的编码捕获了完整的技能执行,而不是先前的工作,而在执行技能之前和之后只有世界状态才被考虑。我们的维修算法提出了符号修改,然后尝试通过修改受符号修复的LTL约束的原始技能来物理实施建议。如果技能不可能,我们会自动为符号维修提供其他约束。我们用巴克斯特和一个清晰的jack狼展示了我们的方法。
translated by 谷歌翻译
模型预测控制(MPC)表明了控制诸如腿机器人等复杂系统的巨大成功。然而,在关闭循环时,在每个控制周期解决的有限范围最佳控制问题(OCP)的性能和可行性不再保证。这是由于模型差异,低级控制器,不确定性和传感器噪声的影响。为了解决这些问题,我们提出了一种修改版本,该版本的标准MPC方法用于带有活力的腿运动(弱向不变性)保证。在这种方法中,代替向问题添加(保守)终端约束,我们建议使用投影到在每个控制周期的OCP中的可行性内核中投影的测量状态。此外,我们使用过去的实验数据来找到最佳成本重量,该重量测量性能,约束满足鲁棒性或稳定性(不变性)的组合。这些可解释的成本衡量了稳健性和性能之间的贸易。为此目的,我们使用贝叶斯优化(BO)系统地设计实验,有助于有效地收集数据以了解导致强大性能的成本函数。我们的模拟结果具有不同的现实干扰(即外部推动,未铭出的执行器动态和计算延迟)表明了我们为人形机器人创造了强大的控制器的方法的有效性。
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
我们提出并通过实验证明了双层机器人的反应性规划系统,在未开发,具有挑战性的地形上。该系统由低频规划线(5Hz)组成,用于找到渐近最佳路径和高频无功螺纹(300Hz)以适应机器人偏差。规划线程包括:多层本地地图,以计算地形上机器人的拖拉性;任何时间的全向控制Lyapunov函数(CLF),用于快速探索随机树星(RRT *),它会生成一个矢量字段,用于指定节点之间的运动;当最终目标位于当前地图之外时,子目标查找器;和一个有限状态的机器来处理高级任务决策。该系统还包括反应线,以避免在执行路径后用传统的RRT *算法出现的非平滑运动。具有机器人偏差的反应线应对,同时通过矢量字段(由闭环反馈策略定义)消除非平滑运动,其为机器人的步态控制器提供实时控制命令作为瞬时机器人姿势的函数。该系统在Cassie Blue的模拟和实验中进行了各种具有挑战性的户外地形和杂乱的室内场景,这是一个具有20个自由度的双模型机器人。所有实现在C ++中编码了机器人操作系统(ROS),可在https://github.com/umich-bipedlab/clf_reactive_planning_system中获得。
translated by 谷歌翻译