在本文中,我们考虑了在不完整视图上的多视图聚类问题。与完整的多视图聚类相比,视图缺失的问题会增加学习不同视图的常见表示的难度。为了解决挑战,我们提出了一种新颖的不完整的多视图聚类框架,该框架包含跨视网围传输和多视图融合学习。具体地,基于在多视图数据中存在的一致性,我们设计了一种基于跨视网围的转移转移的完成模块,该完成模块将已知与缺失视图的已知相似的相互关系的关系传输,并根据传输的图形网络恢复丢失的数据关系图。然后,设计特定于特定的编码器以提取恢复的多视图数据,引入基于注意的融合层以获得公共表示。此外,为了减少由视图之间不一致并获得更好的聚类结构引起的误差的影响,引入了联合聚类层以同时优化恢复和聚类。在几个真实数据集上进行的广泛实验证明了该方法的有效性。
translated by 谷歌翻译
基于图形的多视图聚类,旨在跨多种视图获取数据分区,近年来接受了相当大的关注。虽然已经为基于图形的多视图群集进行了巨大努力,但它对各种视图融合特征仍然是一个挑战,以学习聚类的常见表示。在本文中,我们提出了一种新的一致多曲线图嵌入聚类框架(CMGEC)。具体地,设计了一种多图自动编码器(M-GAE),用于使用多图注意融合编码器灵活地编码多视图数据的互补信息。为了引导所学过的公共表示维护每个视图中相邻特征的相似性,引入了多视图相互信息最大化模块(MMIM)。此外,设计了一个图形融合网络(GFN),以探讨来自不同视图的图表之间的关系,并提供M-GAE所需的常见共识图。通过联合训练这些模型,可以获得共同的潜在表示,其从多个视图中编码更多互补信息,并更全面地描绘数据。三种类型的多视图数据集的实验表明CMGEC优于最先进的聚类方法。
translated by 谷歌翻译
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields. However, most previous works assumed that each view is complete and aligned. This leads to an inevitable deterioration in their performance when encountering practical problems such as missing or unaligned views. To address the challenge of representation learning on partially aligned multi-view data, we propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations. Compared with current approaches, the proposed method has the following merits: (1) our model is an end-to-end framework that simultaneously performs view-specific representation learning via view-specific autoencoders and cluster-level data aligning by combining multi-view information with the cross-view graph contrastive learning; (2) it is easy to apply our model to explore information from three or more modalities/sources as the cross-view graph contrastive learning is devised. Extensive experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
translated by 谷歌翻译
常规的多视图聚类试图基于所有观点的假设,以完全观察到所有观点的假设。但是,在诸如疾病诊断,多媒体分析和建议系统之类的实际应用中,常见的是,在许多情况下,并非所有样品的观点都可以使用,这导致常规多视图聚类方法的失败。在此不完整的多视图数据上的聚类称为不完整的多视图聚类。鉴于有前途的应用前景,近年来对不完整的多视图聚类的研究取得了明显的进步。但是,没有调查可以总结当前的进展并指出未来的研究方向。为此,我们回顾了最新的关于多视图聚类的研究。重要的是,我们提供一些框架来统一相应的不完整的多视图聚类方法,并从理论和实验角度对某些代表性方法进行深入的比较分析。最后,为研究人员提供了不完整的多视图聚类领域中的一些开放问题。
translated by 谷歌翻译
近年来,多视图学习迅速发展。尽管许多先前的研究都认为每个实例都出现在所有视图中,但在现实世界应用程序中很常见,从某些视图中丢失实例,从而导致多视图数据不完整。为了解决这个问题,我们提出了一个新型潜在的异质图网络(LHGN),以实现不完整的多视图学习,该学习旨在以灵活的方式尽可能充分地使用多个不完整的视图。通过学习统一的潜在代表,隐含地实现了不同观点之间一致性和互补性之间的权衡。为了探索样本与潜在表示之间的复杂关系,首次提出了邻域约束和视图约束,以构建异质图。最后,为了避免训练和测试阶段之间的任何不一致之处,基于图形学习的分类任务应用了转导学习技术。对现实世界数据集的广泛实验结果证明了我们模型对现有最新方法的有效性。
translated by 谷歌翻译
不完整的多视图聚类旨在通过使用来自多种模式的数据来增强聚类性能。尽管已经提出了几种研究此问题的方法,但以下缺点仍然存在:1)很难学习潜在的互补性但不使用标签信息而保持一致性的潜在表示; 2)因此,当完整的数据稀缺时,在不完整的数据中未能充分利用不完整数据中的隐藏信息会导致次优群集性能。在本文中,我们提出了与生成对抗网络(CIMIC-GAN)的对比度不完整的多视图图像聚类,该网络使用GAN填充不完整的数据并使用双对比度学习来学习完整和不完整的数据的一致性。更具体地说,考虑到多种方式之间的多样性和互补信息,我们将完整和不完整数据的自动编码表示为双对比度学习,以实现学习一致性。将gan集成到自动编码过程中不仅可以充分利用不完整数据的新功能,而且可以在存在高数据缺失率的情况下更好地概括该模型。在\ textColor {black} {四}广泛使用的数据集上进行的实验表明,cimic-gan优于最先进的不完整的多视图聚类方法。
translated by 谷歌翻译
图像文本聚类(ITC)的目标是通过整合这些异质样品的多模式的互补和一致信息来找到正确的簇。但是,目前的大多数研究都根据理想的前提分析了ITC,即每种模式中的样本都是完整的。但是,在现实情况下,这种推定并不总是有效的。缺少的数据问题使图像文本特征学习性能退化,并最终会影响ITC任务中的概括能力。尽管已经提出了一系列方法来解决此不完整的图像文本群集问题(IITC),但仍然存在以下问题:1)大多数现有方法几乎不考虑异质特征域之间的明显差距。 2)对于缺少数据,很少保证由现有方法生成的表示形式适合聚类任务。 3)现有方法不利用内部和内部模式的潜在连接。在本文中,我们提出了一个聚类引起的生成不完整的图像文本聚类(CIGIT-C)网络,以应对上述挑战。更具体地说,我们首先使用特定于模态的编码器将原始功能映射到更独特的子空间。通过使用对抗生成网络在另一种模态上产生一种方式,可以彻底探索内部内部和模式之间的潜在连接。最后,我们使用两个KL DiverGence损失更新相应的模态特异性编码器。公共图像文本数据集的实验结果表明,建议的方法优于IITC作业更有效。
translated by 谷歌翻译
Multi-view attributed graph clustering is an important approach to partition multi-view data based on the attribute feature and adjacent matrices from different views. Some attempts have been made in utilizing Graph Neural Network (GNN), which have achieved promising clustering performance. Despite this, few of them pay attention to the inherent specific information embedded in multiple views. Meanwhile, they are incapable of recovering the latent high-level representation from the low-level ones, greatly limiting the downstream clustering performance. To fill these gaps, a novel Dual Information enhanced multi-view Attributed Graph Clustering (DIAGC) method is proposed in this paper. Specifically, the proposed method introduces the Specific Information Reconstruction (SIR) module to disentangle the explorations of the consensus and specific information from multiple views, which enables GCN to capture the more essential low-level representations. Besides, the Mutual Information Maximization (MIM) module maximizes the agreement between the latent high-level representation and low-level ones, and enables the high-level representation to satisfy the desired clustering structure with the help of the Self-supervised Clustering (SC) module. Extensive experiments on several real-world benchmarks demonstrate the effectiveness of the proposed DIAGC method compared with the state-of-the-art baselines.
translated by 谷歌翻译
旨在解决不完整的多视图数据中缺少部分视图的聚类问题的不完整的多视图聚类,近年来受到了越来越多的关注。尽管已经开发了许多方法,但大多数方法要么无法灵活地处理不完整的多视图数据,因此使用任意丢失的视图,或者不考虑视图之间信息失衡的负面因素。此外,某些方法并未完全探索所有不完整视图的局部结构。为了解决这些问题,本文提出了一种简单但有效的方法,称为局部稀疏不完整的多视图聚类(LSIMVC)。与现有方法不同,LSIMVC打算通过优化一个稀疏的正则化和新颖的图形嵌入式多视图矩阵分数模型来从不完整的多视图数据中学习稀疏和结构化的潜在表示。具体而言,在基于矩阵分解的这种新型模型中,引入了基于L1规范的稀疏约束,以获得稀疏的低维单个表示和稀疏共识表示。此外,引入了新的本地图嵌入项以学习结构化共识表示。与现有作品不同,我们的本地图嵌入术语汇总了图形嵌入任务和共识表示任务中的简洁术语。此外,为了减少多视图学习的不平衡因素,将自适应加权学习方案引入LSIMVC。最后,给出了有效的优化策略来解决我们提出的模型的优化问题。在六个不完整的多视图数据库上执行的全面实验结果证明,我们的LSIMVC的性能优于最新的IMC方法。该代码可在https://github.com/justsmart/lsimvc中找到。
translated by 谷歌翻译
一致性和互补性是增强多视图聚类(MVC)的两种关键要素。最近,随着流行的对比学习的引入,MVC的观点一致性学习得到了进一步的增强,从而导致了有希望的表现。但是,相比之下,互补性尚未得到足够的关注,除了在功能方面,希尔伯特·施密特独立标准(HSIC)术语(HSIC)术语或通常采用独立的编码器网络以捕获特定视图信息。这促使我们从包括功能,视图标签和对比方面在内的多个方面全面地重新考虑对观点的互补学习,同时保持视图一致性。我们从经验上发现,所有方面都有助于互补学习,尤其是视图标签的方面,通常被现有方法忽略了。基于此,我们开发了一个小说\下划线{m} ultifacet \ usewissline {c} omplementarity学习框架\下划线{m} uldi- \ usepline {v} iew \ usew \ usew suespline {c} lustering(mcmvc),其中融合了多层配置配置。信息,尤其是明确嵌入视图标签信息的信息。据我们所知,这是第一次明确使用视图标签来指导视图的互补学习。与SOTA基线相比,MCMVC在$ 5.00 \%$ $ $ 5.00 \%$和$ 7.00 \%$中的平均利润率分别在CALTECH101-20上分别在CalTech101-20上分别取得了显着的进步,分别是三个评估指标。
translated by 谷歌翻译
由于多源信息集成的能力,多视图聚类吸引了很多关注。尽管在过去几十年中已经提出了许多高级方法,但其中大多数通常忽略了弱监督信息的重要性,并且无法保留多种视图的特征属性,从而导致聚类性能不令人满意。为了解决这些问题,在本文中,我们提出了一种新颖的深度观看半监督聚类(DMSC)方法,该方法在网络填充过程中共同优化了三种损失,包括多视图集群损失,半监督的成对约束损失损失和多个自动编码器重建损失。具体而言,基于KL差异的多视图聚类损失被施加在多视图数据的共同表示上,以同时执行异质特征优化,多视图加权和聚类预测。然后,我们通过创新建议将成对约束集成到多视图聚类的过程中,通过执行所学到的必须链接样本的多视图表示(不能链接样本)是相似的(不同的),以便形成的聚类结构可以可以更可信。此外,与现有的竞争对手不同,该竞争对手仅保留网络填充期间每个异质分支的编码器,我们进一步建议调整完整的自动编码器框架,其中包含编码器和解码器。通过这种方式,可以缓解特定视图和视图共享特征空间的严重腐败问题,从而使整个培训程序更加稳定。通过在八个流行图像数据集上进行的全面实验,我们证明了我们提出的方法的性能要比最先进的多视图和单视竞争对手更好。
translated by 谷歌翻译
图形表示学习(GRL)属性缺失的图表,这是一个常见的难以具有挑战性的问题,最近引起了相当大的关注。我们观察到现有文献:1)隔离属性和结构嵌入的学习因此未能采取两种类型的信息的充分优势; 2)对潜伏空间变量的分布假设施加过于严格的分布假设,从而导致差异较少的特征表示。在本文中,基于在两个信息源之间引入亲密信息交互的想法,我们提出了我们的暹罗属性丢失的图形自动编码器(SAGA)。具体而言,已经进行了三种策略。首先,我们通过引入暹罗网络结构来共享两个进程学习的参数来纠缠嵌入属性嵌入和结构嵌入,这允许网络培训从更丰富和不同的信息中受益。其次,我们介绍了一个K到最近的邻居(knn)和结构约束,增强了学习机制,通过过滤不可靠的连接来提高缺失属性的潜在特征的质量。第三,我们手动掩盖多个相邻矩阵上的连接,并强力嵌入子网恢复真正的相邻矩阵,从而强制实现所得到的网络能够选择性地利用更高级别的判别特征来进行数据完成。六个基准数据集上的广泛实验表明了我们传奇的优越性,反对最先进的方法。
translated by 谷歌翻译
这项工作为聚类提供了无监督的深入判别分析。该方法基于深层神经网络,旨在最大程度地减少群集内差异,并以无监督的方式最大化集群间差异。该方法能够将数据投射到具有紧凑和不同分布模式的非线性低维潜在空间中,以便可以有效地识别数据簇。我们进一步提供了该方法的扩展,以便可以有效利用可用的图形信息来提高聚类性能。带有或没有图形信息的图像和非图像数据的广泛数值结果证明了所提出的方法的有效性。
translated by 谷歌翻译
随着数据采集技术的发展,多视图学习已成为一个热门话题。一些多视图学习方法假设多视图数据已经完成,这意味着所有实例都存在,但这太理想了。某些用于传递不完整多视图数据的基于张量的方法已经出现并取得了更好的结果。但是,仍然存在一些问题,例如使用传统的张量规范,这使计算高且无法处理样本外。为了解决这两个问题,我们提出了一种新的不完整的多视图学习方法。定义了一个新的张量规范来实现图形张量数据恢复。然后将恢复的图定于样品的一致的低维表示。此外,自适应权重配备了每种视图,以调整不同视图的重要性。与现有方法相比,我们的方法也不仅仅探讨视图之间的一致性,但也通过使用学习的投影矩阵获得了新样本的低维表示。基于不精确的增强Lagrange乘数(ALM)方法的有效算法旨在解决模型,并证明了收敛性。四个数据集的实验结果显示了我们方法的有效性。
translated by 谷歌翻译
现有的深度嵌入聚类工作仅考虑最深层的学习功能嵌入,因此未能利用来自群集分配的可用辨别信息,从而产生性能限制。为此,我们提出了一种新颖的方法,即深入关注引导的图形聚类与双自我监督(DAGC)。具体地,DAGC首先利用异质性 - 方向融合模块,以便于在每个层中自适应地集成自动编码器的特征和图形卷积网络,然后使用尺度明智的融合模块动态地连接不同层中的多尺度特征。这种模块能够通过基于注意的机制学习歧视特征。此外,我们设计了一种分配明智的融合模块,它利用群集分配直接获取聚类结果。为了更好地探索集群分配的歧视信息,我们开发了一种双重自我监督解决方案,包括软自我监督策略,具有三联kullback-Leibler发散损失和具有伪监督损失的硬自我监督策略。广泛的实验验证了我们的方法在六个基准数据集中始终如一地优于最先进的方法。特别是,我们的方法通过最佳基线超过18.14%的方法将ARI提高。
translated by 谷歌翻译
多视图无监督的特征选择(MUF)已被证明是一种有效的技术,可降低多视图未标记数据的维度。现有方法假定所有视图都已完成。但是,多视图数据通常不完整,即,某些视图中显示了一部分实例,但并非所有视图。此外,学习完整的相似性图,作为现有MUFS方法中重要的有前途的技术,由于缺少的观点而无法实现。在本文中,我们提出了一个基于互补的和共识学习的不完整的多视图无监督的特征选择方法(C $^{2} $ IMUFS),以解决上述问题。具体而言,c $^{2} $ imufs将功能选择集成到扩展的加权非负矩阵分解模型中,配备了自适应学习视图和稀疏的$ \ ell_ {2,p} $ - norm-norm,它可以提供更好的提供适应性和灵活性。通过从不同视图得出的多个相似性矩阵的稀疏线性组合,介绍了互补学习引导的相似性矩阵重建模型,以在每个视图中获得完整的相似性图。此外,c $^{2} $ imufs学习了跨不同视图的共识聚类指示器矩阵,并将其嵌入光谱图术语中以保留本地几何结构。现实世界数据集的全面实验结果证明了与最新方法相比,C $^{2} $ IMUF的有效性。
translated by 谷歌翻译
深图形聚类,旨在揭示底层的图形结构并将节点划分为不同的群体,近年来引起了密集的关注。然而,我们观察到,在节点编码的过程中,现有方法遭受表示崩溃,这倾向于将所有数据映射到相同的表示中。因此,节点表示的鉴别能力是有限的,导致不满足的聚类性能。为了解决这个问题,我们提出了一种新颖的自我监督的深图聚类方法,通过以双向还原信息相关性来称呼双重关联减少网络(DCRN)。具体而言,在我们的方法中,我们首先将暹罗网络设计为编码样本。然后通过强制跨视图样本相关矩阵和跨视图特征相关矩阵分别近似两个标识矩阵,我们减少了双级的信息相关性,从而提高了所得特征的判别能力。此外,为了减轻通过在GCN中过度平滑引起的表示崩溃,我们引入了传播正规化术语,使网络能够利用浅网络结构获得远程信息。六个基准数据集的广泛实验结果证明了提出的DCRN对现有最先进方法的有效性。
translated by 谷歌翻译
The past two decades have seen increasingly rapid advances in the field of multi-view representation learning due to it extracting useful information from diverse domains to facilitate the development of multi-view applications. However, the community faces two challenges: i) how to learn robust representations from a large amount of unlabeled data to against noise or incomplete views setting, and ii) how to balance view consistency and complementary for various downstream tasks. To this end, we utilize a deep fusion network to fuse view-specific representations into the view-common representation, extracting high-level semantics for obtaining robust representation. In addition, we employ a clustering task to guide the fusion network to prevent it from leading to trivial solutions. For balancing consistency and complementary, then, we design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation. These modules are incorporated into a unified method known as CLustering-guided cOntrastiVE fusioN (CLOVEN). We quantitatively and qualitatively evaluate the proposed method on five datasets, demonstrating that CLOVEN outperforms 11 competitive multi-view learning methods in clustering and classification. In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors. Furthermore, the visualization analysis shows that CLOVEN can preserve the intrinsic structure of view-specific representation while also improving the compactness of view-commom representation. Our source code will be available soon at https://github.com/guanzhou-ke/cloven.
translated by 谷歌翻译
由于在建模相互依存系统中,由于其高效用,多层图已经在许多领域获得了大量的研究。然而,多层图的聚类,其旨在将图形节点划分为类别或社区,仍处于新生阶段。现有方法通常限于利用MultiView属性或多个网络,并忽略更复杂和更丰富的网络框架。为此,我们向多层图形聚类提出了一种名为Multidayer agal对比聚类网络(MGCCN)的多层图形聚类的通用和有效的AutoEncoder框架。 MGCCN由三个模块组成:(1)应用机制以更好地捕获节点与邻居之间的相关性以获得更好的节点嵌入。 (2)更好地探索不同网络中的一致信息,引入了对比融合策略。 (3)MGCCN采用自我监督的组件,可迭代地增强节点嵌入和聚类。对不同类型的真实图数据数据的广泛实验表明我们所提出的方法优于最先进的技术。
translated by 谷歌翻译
Multi-view graph clustering (MGC) methods are increasingly being studied due to the explosion of multi-view data with graph structural information. The critical point of MGC is to better utilize the view-specific and view-common information in features and graphs of multiple views. However, existing works have an inherent limitation that they are unable to concurrently utilize the consensus graph information across multiple graphs and the view-specific feature information. To address this issue, we propose Variational Graph Generator for Multi-View Graph Clustering (VGMGC). Specifically, a novel variational graph generator is proposed to extract common information among multiple graphs. This generator infers a reliable variational consensus graph based on a priori assumption over multiple graphs. Then a simple yet effective graph encoder in conjunction with the multi-view clustering objective is presented to learn the desired graph embeddings for clustering, which embeds the inferred view-common graph and view-specific graphs together with features. Finally, theoretical results illustrate the rationality of VGMGC by analyzing the uncertainty of the inferred consensus graph with information bottleneck principle. Extensive experiments demonstrate the superior performance of our VGMGC over SOTAs.
translated by 谷歌翻译