Covid-19-Pandemic继续在世界上迅速传播,并在全球人类健康和经济中造成巨大危机。它的早期检测和诊断对于控制进一步的扩散至关重要。已经提出了许多基于学习的深度方法,以帮助临床医生根据计算机断层扫描成像进行自动COVID-19诊断。但是,仍然存在挑战,包括现有数据集中的数据多样性,以及由于深度学习模型的准确性和敏感性不足而导致的检测不满意。为了增强数据多样性,我们设计了增量级别的增强技术,并将其应用于最大的开放式基准测试数据集Covidx CT-2A。同时,在本研究中提出了从对比度学习中得出的相似性正则化(SR),以使CNN能够学习更多参数有效的表示,从而提高了CNN的准确性和敏感性。七个常用CNN的结果表明,通过应用设计的增强和SR技术,可以稳定地提高CNN性能。特别是,具有SR的Densenet121在三个试验中的三类分类中达到99.44%的平均测试准确性,包括正常,非covid-19-19-19肺炎和Covid-19-19。 COVID-19肺炎类别的精确度,敏感性和特异性分别为98.40%,99.59%和99.50%。这些统计数据表明,我们的方法已经超过了COVIDX CT-2A数据集上现有的最新方法。
translated by 谷歌翻译
胸部射线照相是一种相对便宜,广泛的医疗程序,可传达用于进行诊断决策的关键信息。胸部X射线几乎总是用于诊断呼吸系统疾病,如肺炎或最近的Covid-19。在本文中,我们提出了一个自我监督的深神经网络,其在未标记的胸部X射线数据集上掠夺。学习的陈述转移到下游任务 - 呼吸系统疾病的分类。在四个公共数据集获得的结果表明,我们的方法在不需要大量标记的培训数据的情况下产生竞争力。
translated by 谷歌翻译
最近先进的无监督学习方法使用暹罗样框架来比较来自同一图像的两个“视图”以进行学习表示。使两个视图独特是一种保证无监督方法可以学习有意义的信息的核心。但是,如果使用用于生成两个视图的增强不足够强度,此类框架有时会易碎过度装备,导致培训数据上的过度自信的问题。此缺点会阻碍模型,从学习微妙方差和细粒度信息。为了解决这个问题,在这项工作中,我们的目标是涉及在无监督的学习中的标签空间上的距离概念,并让模型通过混合输入数据空间来了解正面或负对对之间的柔和程度,以便协同工作输入和损耗空间。尽管其概念性简单,我们凭借解决的解决方案 - 无监督图像混合(UN-MIX),我们可以从转换的输入和相应的新标签空间中学习Subtler,更强大和广义表示。广泛的实验在CiFar-10,CiFar-100,STL-10,微小的想象和标准想象中进行了流行的无人监督方法SIMCLR,BYOL,MOCO V1和V2,SWAV等。我们所提出的图像混合物和标签分配策略可以获得一致的改进在完全相同的超参数和基础方法的培训程序之后1〜3%。代码在https://github.com/szq0214/un-mix上公开提供。
translated by 谷歌翻译
最近对比学习在从未标记数据学习视觉表现方面表现出显着进展。核心思想正在培训骨干,以不变的实例的不同增强。虽然大多数方法只能最大化两个增强数据之间的特征相似性,但我们进一步产生了更具挑战性的训练样本,并强迫模型继续预测这些硬样品上的判别表示。在本文中,我们提出了Mixsiam,传统暹罗网络的混合方法。一方面,我们将实例的两个增强图像输入到骨干,并通过执行两个特征的元素最大值来获得辨别结果。另一方面,我们将这些增强图像的混合物作为输入,并期望模型预测接近鉴别的表示。以这种方式,模型可以访问实例的更多变体数据样本,并继续预测它们的不变判别表示。因此,与先前的对比学习方法相比,学习模型更加强大。大型数据集的广泛实验表明,Mixsiam稳步提高了基线,并通过最先进的方法实现了竞争结果。我们的代码即将发布。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
This paper presents our solution for the 2nd COVID-19 Severity Detection Competition. This task aims to distinguish the Mild, Moderate, Severe, and Critical grades in COVID-19 chest CT images. In our approach, we devise a novel infection-aware 3D Contrastive Mixup Classification network for severity grading. Specifcally, we train two segmentation networks to first extract the lung region and then the inner lesion region. The lesion segmentation mask serves as complementary information for the original CT slices. To relieve the issue of imbalanced data distribution, we further improve the advanced Contrastive Mixup Classification network by weighted cross-entropy loss. On the COVID-19 severity detection leaderboard, our approach won the first place with a Macro F1 Score of 51.76%. It significantly outperforms the baseline method by over 11.46%.
translated by 谷歌翻译
世界目前正在经历持续的传染病大流行病,该传染病是冠状病毒疾病2019(即covid-19),这是由严重的急性呼吸综合征冠状病毒2(SARS-COV-2)引起的。计算机断层扫描(CT)在评估感染的严重程度方面发挥着重要作用,并且还可用于识别这些症状和无症状的Covid-19载体。随着Covid-19患者的累积数量的激增,放射科医师越来越强调手动检查CT扫描。因此,自动化3D CT扫描识别工具的需求量高,因为手动分析对放射科医师耗时,并且它们的疲劳可能导致可能的误判。然而,由于位于不同医院的CT扫描仪的各种技术规范,CT图像的外观可能显着不同,导致许多自动图像识别方法的失败。因此,多域和多扫描仪研究的多域移位问题是不可能对可靠识别和可再现和客观诊断和预后至关重要的至关重要。在本文中,我们提出了Covid-19 CT扫描识别模型即Coronavirus信息融合和诊断网络(CIFD-NET),可以通过新的强大弱监督的学习范式有效地处理多域移位问题。与其他最先进的方法相比,我们的模型可以可靠,高效地解决CT扫描图像中不同外观的问题。
translated by 谷歌翻译
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub. 3 * Equal contribution; the order of first authors was randomly selected.
translated by 谷歌翻译
自我监督的学习(SSL)通过大量未标记的数据的先知,在各种医学成像任务上取得了出色的性能。但是,对于特定的下游任务,仍然缺乏有关如何选择合适的借口任务和实现细节的指令书。在这项工作中,我们首先回顾了医学成像分析领域中自我监督方法的最新应用。然后,我们进行了广泛的实验,以探索SSL中的四个重要问题用于医学成像,包括(1)自我监督预处理对不平衡数据集的影响,(2)网络体系结构,(3)上游任务对下游任务和下游任务和下游任务的适用性(4)SSL和常用政策用于深度学习的堆叠效果,包括数据重新采样和增强。根据实验结果,提出了潜在的指南,以在医学成像中进行自我监督预处理。最后,我们讨论未来的研究方向并提出问题,以了解新的SSL方法和范式时要注意。
translated by 谷歌翻译
Background and objective: COVID-19 and its variants have caused significant disruptions in over 200 countries and regions worldwide, affecting the health and lives of billions of people. Detecting COVID-19 from chest X-Ray (CXR) images has become one of the fastest and easiest methods for detecting COVID-19 since the common occurrence of radiological pneumonia findings in COVID-19 patients. We present a novel high-accuracy COVID-19 detection method that uses CXR images. Methods: Our method consists of two phases. One is self-supervised learning-based pertaining; the other is batch knowledge ensembling-based fine-tuning. Self-supervised learning-based pretraining can learn distinguished representations from CXR images without manually annotated labels. On the other hand, batch knowledge ensembling-based fine-tuning can utilize category knowledge of images in a batch according to their visual feature similarities to improve detection performance. Unlike our previous implementation, we introduce batch knowledge ensembling into the fine-tuning phase, reducing the memory used in self-supervised learning and improving COVID-19 detection accuracy. Results: On two public COVID-19 CXR datasets, namely, a large dataset and an unbalanced dataset, our method exhibited promising COVID-19 detection performance. Our method maintains high detection accuracy even when annotated CXR training images are reduced significantly (e.g., using only 10% of the original dataset). In addition, our method is insensitive to changes in hyperparameters. Conclusions: The proposed method outperforms other state-of-the-art COVID-19 detection methods in different settings. Our method can reduce the workloads of healthcare providers and radiologists.
translated by 谷歌翻译
背景:宫颈癌严重影响了女性生殖系统的健康。光学相干断层扫描(OCT)作为宫颈疾病检测的非侵入性,高分辨率成像技术。然而,OCT图像注释是知识密集型和耗时的,这阻碍了基于深度学习的分类模型的培训过程。目的:本研究旨在基于自我监督学习,开发一种计算机辅助诊断(CADX)方法来对体内宫颈OCT图像进行分类。方法:除了由卷积神经网络(CNN)提取的高电平语义特征外,建议的CADX方法利用了通过对比纹理学习来利用未标记的宫颈OCT图像的纹理特征。我们在中国733名患者的多中心临床研究中对OCT图像数据集进行了十倍的交叉验证。结果:在用于检测高风险疾病的二元分类任务中,包括高级鳞状上皮病变和宫颈癌,我们的方法实现了0.9798加号或减去0.0157的面积曲线值,灵敏度为91.17加或对于OCT图像贴片,减去4.99%,特异性为93.96加仑或减去4.72%;此外,它在测试集上的四位医学专家中表现出两种。此外,我们的方法在使用交叉形阈值投票策略的118名中国患者中达到了91.53%的敏感性和97.37%的特异性。结论:所提出的基于对比 - 学习的CADX方法表现优于端到端的CNN模型,并基于纹理特征提供更好的可解释性,其在“见和治疗”的临床协议中具有很大的潜力。
translated by 谷歌翻译
我们提出了自适应培训 - 一种统一的培训算法,通过模型预测动态校准并增强训练过程,而不会产生额外的计算成本 - 以推进深度神经网络的监督和自我监督的学习。我们分析了培训数据的深网络培训动态,例如随机噪声和对抗例。我们的分析表明,模型预测能够在数据中放大有用的基础信息,即使在没有任何标签信息的情况下,这种现象也会发生,突出显示模型预测可能会产生培训过程:自适应培训改善了深网络的概括在噪音下,增强自我监督的代表学习。分析还阐明了解深度学习,例如,在经验风险最小化和最新的自我监督学习算法的折叠问题中对最近发现的双重现象的潜在解释。在CIFAR,STL和Imagenet数据集上的实验验证了我们在三种应用中的方法的有效性:用标签噪声,选择性分类和线性评估进行分类。为了促进未来的研究,该代码已在HTTPS://github.com/layneh/Self-Aveptive-训练中公开提供。
translated by 谷歌翻译
This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive selfsupervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by Sim-CLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-ofthe-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100× fewer labels. 1
translated by 谷歌翻译
Well-annotated medical datasets enable deep neural networks (DNNs) to gain strong power in extracting lesion-related features. Building such large and well-designed medical datasets is costly due to the need for high-level expertise. Model pre-training based on ImageNet is a common practice to gain better generalization when the data amount is limited. However, it suffers from the domain gap between natural and medical images. In this work, we pre-train DNNs on ultrasound (US) domains instead of ImageNet to reduce the domain gap in medical US applications. To learn US image representations based on unlabeled US videos, we propose a novel meta-learning-based contrastive learning method, namely Meta Ultrasound Contrastive Learning (Meta-USCL). To tackle the key challenge of obtaining semantically consistent sample pairs for contrastive learning, we present a positive pair generation module along with an automatic sample weighting module based on meta-learning. Experimental results on multiple computer-aided diagnosis (CAD) problems, including pneumonia detection, breast cancer classification, and breast tumor segmentation, show that the proposed self-supervised method reaches state-of-the-art (SOTA). The codes are available at https://github.com/Schuture/Meta-USCL.
translated by 谷歌翻译
这项工作提出了一种新型的自我监督的预训练方法,以学习有效的表示,而没有在组织病理学医学图像上使用放大倍率的因素进行标签。其他最先进的工作主要集中在完全监督的学习方法上,这些学习方法严重依赖人类注释。但是,标记和未标记数据的稀缺性是组织病理学的长期挑战。当前,没有标签的表示学习仍未探索组织病理学领域。提出的方法是放大事先的对比相似性(MPC),可以通过利用放大倍率,电感转移和减少人类先验的宽度乳腺癌数据集中的无标签来进行自我监督的学习。当仅20%的标签用于微调和表现以前的工作中,在完全监督的学习环境中,该方法与恶性分类的最新学习相匹配。它提出了一个假设,并提供了经验证据来支持,从而减少人类优先导致自学​​中有效表示学习。这项工作的实施可在github-https://github.com/prakashchhipa/magnification-prior-self-supervised-method上在线获得。
translated by 谷歌翻译
对比度学习重要的是什么?我们认为,对比度学习在很大程度上取决于信息丰富的特征或“硬”(正面或负面)特征。早期作品包括通过应用复杂的数据增强和较大的批量尺寸或内存库以及最近的作品设计精心设计的采样方法来探索信息丰富的功能,包括更有信息的功能。探索此类功能的关键挑战是,通过应用随机数据增强来生成源多视图数据,这使得始终在增强数据中添加有用的信息是不可行的。因此,从这种增强数据中学到的功能的信息有限。作为回应,我们建议直接增强潜在空间中的特征,从而在没有大量输入数据的情况下学习判别性表示。我们执行一种元学习技术来构建通过考虑编码器的性能来更新其网络参数的增强生成器。但是,输入数据不足可能会导致编码器学习折叠功能,从而导致增强发生器故障。在目标函数中进一步添加了新的注入边缘的正则化,以避免编码器学习退化映射。为了对比一个梯度背部传播步骤中的所有特征,我们采用了提出的优化驱动的统一对比损失,而不是常规的对比损失。从经验上讲,我们的方法在几个基准数据集上实现了最新的结果。
translated by 谷歌翻译
时空表示学习对于视频自我监督的表示至关重要。最近的方法主要使用对比学习和借口任务。然而,这些方法通过在潜在空间中的特征相似性判断所学习表示的中间状态的同时通过潜伏空间中的特征相似性来学习表示,这限制了整体性能。在这项工作中,考虑到采样实例的相似性作为中级状态,我们提出了一种新的借口任务 - 时空 - 时间重叠速率(Stor)预测。它源于观察到,人类能够区分空间和时间在视频中的重叠率。此任务鼓励模型区分两个生成的样本的存储来学习表示。此外,我们采用了联合优化,将借口任务与对比学习相结合,以进一步增强时空表示学习。我们还研究了所提出的计划中每个组分的相互影响。广泛的实验表明,我们的拟议Stor任务可以赞成对比学习和借口任务。联合优化方案可以显着提高视频理解中的时空表示。代码可在https://github.com/katou2/cstp上获得。
translated by 谷歌翻译
有监督的深度学习算法具有自动化筛查,监视和分级的医学图像的巨大潜力。但是,培训表现模型通常需要大量的标记数据,这在医疗领域几乎无法获得。自我监督的对比框架通过首先从未标记的图像中学习来放松这种依赖性。在这项工作中,我们表明使用两种对比方法进行了预处理,即SIMCLR和BYOL,就与年龄相关的黄斑变性(AMD)的临床评估有关深度学习的实用性。在实验中,使用两个大型临床数据集,其中包含7,912名患者的170,427个光学相干断层扫描(OCT)图像,我们评估了从AMD阶段和类型分类到功能性终点的七个下游任务,从七个下游任务进行预处理,从在标签较少的七个任务中,六个任务中有六个显着增加。但是,标准的对比框架具有两个已知的弱点,这些弱点不利于医疗领域的预处理。用于创建正面对比对的几种图像转换不适用于灰度医学扫描。此外,医学图像通常描绘了相同的解剖区域和疾病的严重程度,从而导致许多误导性负面对。为了解决这些问题,我们开发了一种新颖的元数据增强方法,该方法利用了丰富的固有可用患者信息集。为此,我们采用了患者身份,眼睛位置(即左或右)和时间序列数据的记录,以指示典型的不可知的对比关系。通过利用这种经常被忽视的信息,我们元数据增强的对比预处理可带来进一步的好处,并且在下游七个任务中有五个任务中的五个中的五分之一。
translated by 谷歌翻译
高质量注释的医学成像数据集的稀缺性是一个主要问题,它与医学成像分析领域的机器学习应用相撞并阻碍了其进步。自我监督学习是一种最近的培训范式,可以使学习强大的表示无需人类注释,这可以被视为有效的解决方案,以解决带注释的医学数据的稀缺性。本文回顾了自我监督学习方法的最新研究方向,用于图像数据,并将其专注于其在医学成像分析领域的应用。本文涵盖了从计算机视野领域的最新自我监督学习方法,因为它们适用于医学成像分析,并将其归类为预测性,生成性和对比性方法。此外,该文章涵盖了40个在医学成像分析中自学学习领域的最新研究论文,旨在阐明该领域的最新创新。最后,本文以该领域的未来研究指示结束。
translated by 谷歌翻译
现有的深度聚类方法依赖于对比学习的对比学习,这需要否定例子来形成嵌入空间,其中所有情况都处于良好分离状态。但是,否定的例子不可避免地引起阶级碰撞问题,损害了群集的表示学习。在本文中,我们探讨了对深度聚类的非对比表示学习,被称为NCC,其基于Byol,一种没有负例的代表性方法。首先,我们建议将一个增强的实例与嵌入空间中的另一个视图的邻居对齐,称为正抽样策略,该域避免了由否定示例引起的类碰撞问题,从而提高了集群内的紧凑性。其次,我们建议鼓励在所有原型中的一个原型和均匀性的两个增强视图之间的对准,命名的原型是原型的对比损失或protocl,这可以最大化簇间距离。此外,我们在期望 - 最大化(EM)框架中制定了NCC,其中E-Step利用球面K手段来估计实例的伪标签和来自目标网络的原型的分布,并且M-Step利用了所提出的损失优化在线网络。结果,NCC形成了一个嵌入空间,其中所有集群都处于分离良好,而内部示例都很紧凑。在包括ImageNet-1K的几个聚类基准数据集上的实验结果证明了NCC优于最先进的方法,通过显着的余量。
translated by 谷歌翻译