单发神经架构搜索(NAS)的算法已被广泛用于减少计算消耗。但是,由于共享权重的子网之间的干扰,从这些算法训练的超级网络中继承的子网在精度排名中的一致性较差。为了解决这个问题,我们提出了一个从一声NAS到少数NAS的逐步培训超网络。在培训方案中,我们首先以一种单发的方式训练超级网络,然后通过将它们拆分为多subnetnet并逐渐训练超级网络。最后,我们的方法在CVPR2022中排名第四,第三轻量化NAS挑战赛1。我们的代码可在https://github.com/liujiawei23333/cvpr2022-nas-competition-track-1-4tholdoluty获得。
translated by 谷歌翻译
神经体系结构搜索方法寻求具有有效的体重共享超级网训练的最佳候选者。但是,最近的研究表明,关于独立架构和共享重量网络之间的性能的排名一致性差。在本文中,我们提出了提前引导的一声NAS(PGONA),以加强超级网的排名相关性。具体而言,我们首先探讨激活功能的效果,并提出基于三明治规则的平衡采样策略,以减轻超级网中的重量耦合。然后,采用了拖鞋和禅宗得分来指导超级网的训练,并具有排名相关性损失。我们的PGONA在CVPR2022第二轻型NAS挑战赛的SuperNet轨道中排名第三。代码可在https://github.com/pprp/cvpr2022-nas?competition-track1-3th-solution中找到。
translated by 谷歌翻译
神经结构搜索(NAS)引起了日益增长的兴趣。为了降低搜索成本,最近的工作已经探讨了模型的重量分享,并在单枪NAS进行了重大进展。然而,已经观察到,单次模型精度较高的模型并不一定在独立培训时更好地执行更好。为了解决这个问题,本文提出了搜索空间的逐步自动设计,名为Pad-NAS。与超字幕中的所有层共享相同操作搜索空间的先前方法不同,我们根据操作修剪制定逐行搜索策略,并构建层面操作搜索空间。通过这种方式,Pad-NAS可以自动设计每层的操作,并在搜索空间质量和模型分集之间实现权衡。在搜索过程中,我们还考虑了高效神经网络模型部署的硬件平台约束。关于Imagenet的广泛实验表明我们的方法可以实现最先进的性能。
translated by 谷歌翻译
由于物体形状和图案(例如器官或肿瘤)的高可变性,3D医学图像的语义分割是一个具有挑战性的任务。鉴于最近在医学图像分割中深入学习的成功,已经引入了神经结构搜索(NAS)以查找高性能3D分段网络架构。但是,由于3D数据的大量计算要求和架构搜索的离散优化性质,之前的NAS方法需要很长的搜索时间或必要的连续放松,并且通常导致次优网络架构。虽然单次NAS可能会解决这些缺点,但其在分段域中的应用尚未在膨胀的多尺度多路径搜索空间中进行很好地研究。为了为医学图像分割启用一次性NAS,我们的方法名为Hypersegnas,介绍了通过结合建筑拓扑信息来帮助超级培训培训。在培训超级网络培训并在架构搜索期间引入开销时,可以删除这种超空头。我们表明,与以前的最先进的(SOTA)分割网络相比,Hypersegnas产生更好的表现和更直观的架构;此外,它可以在不同的计算限制下快速准确地找到良好的体系结构候选者。我们的方法是在医疗细分Decovaton(MSD)挑战的公共数据集上评估,并实现了SOTA表演。
translated by 谷歌翻译
由于其效率,一声神经架构搜索(NAS)已被广泛用于发现架构。但是,先前的研究表明,由于架构之间的操作参数过度共享(即大共享范围),架构的一声绩效估计可能与他们在独立培训中的表现没有很好的相关性。因此,最近的方法构建了更高参数化的超级链,以降低共享程度。但是这些改进的方法引入了大量额外的参数,因此在培训成本和排名质量之间导致不良的权衡。为了减轻上述问题,我们建议将课程学习应用于共享范围(接近),以有效地训练超级网。具体而言,我们在一开始就以很大的共享范围(简单的课程)训练超网,并逐渐降低了超级网的共享程度(更难的课程)。为了支持这种培训策略,我们设计了一个新颖的超级网(闭合性),该超级网(CLESENET)将参数从操作中解耦,以实现灵活的共享方案和可调节的共享范围。广泛的实验表明,与其他一击的超级网络相比,Close可以在不同的计算预算限制中获得更好的排名质量,并且在与各种搜索策略结合使用时能够发现出色的体系结构。代码可从https://github.com/walkerning/aw_nas获得。
translated by 谷歌翻译
Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture optimality depends on factors such as input resolution and target devices. However, existing approaches are too resource demanding for case-by-case redesigns. Also, previous work focuses primarily on reducing FLOPs, but FLOP count does not always reflect actual latency. To address these, we propose a differentiable neural architecture search (DNAS) framework that uses gradient-based methods to optimize Con-vNet architectures, avoiding enumerating and training individual architectures separately as in previous methods. FBNets (Facebook-Berkeley-Nets), a family of models discovered by DNAS surpass state-of-the-art models both designed manually and generated automatically. FBNet-B achieves 74.1% top-1 accuracy on ImageNet with 295M FLOPs and 23.1 ms latency on a Samsung S8 phone, 2.4x smaller and 1.5x faster than MobileNetV2-1.3[17] with similar accuracy. Despite higher accuracy and lower latency than MnasNet[20], we estimate FBNet-B's search cost is 420x smaller than MnasNet's, at only 216 GPUhours. Searched for different resolutions and channel sizes, FBNets achieve 1.5% to 6.4% higher accuracy than Mo-bileNetV2. The smallest FBNet achieves 50.2% accuracy and 2.9 ms latency (345 frames per second) on a Samsung S8. Over a Samsung-optimized FBNet, the iPhone-Xoptimized model achieves a 1.4x speedup on an iPhone X. FBNet models are open-sourced at https://github. com/facebookresearch/mobile-vision. * Work done while interning at Facebook.… Figure 1. Differentiable neural architecture search (DNAS) for ConvNet design. DNAS explores a layer-wise space that each layer of a ConvNet can choose a different block. The search space is represented by a stochastic super net. The search process trains the stochastic super net using SGD to optimize the architecture distribution. Optimal architectures are sampled from the trained distribution. The latency of each operator is measured on target devices and used to compute the loss for the super net.
translated by 谷歌翻译
现代神经结构搜索方法对几个学科进行了多次破坏最先进的结果。超级网络,许多这样的方法的中心组件,可以快速估计搜索空间中的任何架构的准确性或损失统计数据。它们包含所有候选架构的网络权重,因此可以通过应用各个操作来近似特定的。但是,这种设计忽略了连续操作之间的潜在依赖关系。我们将超级网络扩展到有条件的权重,这些重量取决于选择的组合并分析它们的效果。NAS - 台凳201和基于NAS - 台型宏的搜索空间的实验显示了架构选择的改进,并且资源开销几乎可以忽略不计,以便顺序网络设计。
translated by 谷歌翻译
体重共享是一种流行的方法,可以通过重复以前训练的儿童模型的共享操作员的权重来降低神经体系结构搜索(NAS)的成本。但是,由于重量共享引起的不同儿童模型之间的干扰,这些儿童模型的估计准确性和地面真实准确性之间的等级相关性很低。在本文中,我们通过对不同的儿童模型进行采样并计算共享操作员的梯度相似性来研究干扰问题,并观察:1)两个儿童模型之间对共享操作员的干扰与不同操作员的数量正相关; 2)当共享操作员的输入和输出更相似时,干扰较小。受这两个观察结果的启发,我们提出了两种减轻干扰的方法:1)魔术-T:而不是随机采样儿童模型以进行优化,而是通过在相邻优化步骤之间修改一个操作员来最大程度地减少对干扰的干扰,从而提出了一种逐步修改方案。共享操作员; 2)Magic-A:强迫所有儿童模型的操作员的输入和输出与减少干扰相似。在BERT搜索空间上进行的实验证明,通过我们提出的每种方法来缓解干扰可以改善Super-PET的秩相关性,并结合两种方法可以取得更好的结果。我们发现的体系结构优于Roberta $ _ {\ rm base} $ 1.1和0.6分,而Electra $ _ {\ rm base} $在DEV和测试集的粘合基准的$ 1.6和1.1分。关于BERT压缩,阅读理解和成像网任务的广泛结果证明了我们提出的方法的有效性和普遍性。
translated by 谷歌翻译
We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.Equal contribution. This work is done when Haoyuan Mu and Zechun Liu are interns at MEGVII Technology.
translated by 谷歌翻译
在NAS领域中,可分构造的架构搜索是普遍存在的,因为它的简单性和效率,其中两个范例,多路径算法和单路径方法主导。多路径框架(例如,DARTS)是直观的,但遭受内存使用和培训崩溃。单路径方法(例如,e.g.gdas和proxylesnnas)减轻了内存问题并缩小了搜索和评估之间的差距,但牺牲了性能。在本文中,我们提出了一种概念上简单的且有效的方法来桥接这两个范式,称为相互意识的子图可差架构搜索(MSG-DAS)。我们框架的核心是一个可分辨动的Gumbel-Topk采样器,它产生多个互斥的单路径子图。为了缓解多个子图形设置所带来的Severer Skip-Connect问题,我们提出了一个Dropblock-Identity模块来稳定优化。为了充分利用可用的型号(超级网和子图),我们介绍了一种记忆高效的超净指导蒸馏,以改善培训。所提出的框架击中了灵活的内存使用和搜索质量之间的平衡。我们展示了我们在想象中和CIFAR10上的方法的有效性,其中搜索的模型显示了与最近的方法相当的性能。
translated by 谷歌翻译
现有的神经结构搜索算法主要在具有短距离连接的搜索空间上。我们争辩说,这种设计虽然安全稳定,障碍搜索算法从探索更复杂的情景。在本文中,我们在具有长距离连接的复杂搜索空间上构建搜索算法,并显示现有的权重共享搜索算法由于存在\ TextBF {交织连接}而大部分失败。基于观察,我们介绍了一个名为\ textbf {if-nas}的简单且有效的算法,在那里我们在搜索过程中执行定期采样策略来构建不同的子网,避免在任何中的交织连接出现。在所提出的搜索空间中,IF-NAS优于随机采样和先前的重量共享搜索算法,通过显着的余量。 IF-NAS还推广到微单元的空间,这些空间更容易。我们的研究强调了宏观结构的重要性,我们期待沿着这个方向进一步努力。
translated by 谷歌翻译
功能提取器在文本识别(TR)中起着至关重要的作用,但是由于昂贵的手动调整,自定义其体系结构的探索相对较少。在这项工作中,受神经体系结构搜索(NAS)的成功启发,我们建议搜索合适的功能提取器。我们通过探索具有良好功能提取器的原理来设计特定于域的搜索空间。该空间包括用于空间模型的3D结构空间和顺序模型的基于转换的空间。由于该空间是巨大且结构复杂的,因此无法应用现有的NAS算法。我们提出了一种两阶段算法,以有效地在空间中进行搜索。在第一阶段,我们将空间切成几个块,并借助辅助头逐步训练每个块。我们将延迟约束引入第二阶段,并通过自然梯度下降从受过训练的超级网络搜索子网络。在实验中,进行了一系列消融研究,以更好地了解设计的空间,搜索算法和搜索架构。我们还将所提出的方法与手写和场景TR任务上的各种最新方法进行了比较。广泛的结果表明,我们的方法可以以较小的延迟获得更好的识别性能。
translated by 谷歌翻译
最近,自我关注操作员将卓越的性能作为视觉模型的独立构建块。然而,现有的自我关注模型通常是手动设计的,从CNN修改,并仅通过堆叠一个操作员而获得。很少探索相结合不同的自我关注操作员和卷积的更广泛的建筑空间。在本文中,我们探讨了具有权重共享神经结构搜索(NAS)算法的新颖建筑空间。结果架构被命名为Triomet,用于组合卷积,局部自我关注和全球(轴向)自我关注操作员。为了有效地搜索在这个巨大的建筑空间中,我们提出了分层采样,以便更好地培训超空网。此外,我们提出了一种新的重量分享策略,多头分享,专门针对多头自我关注运营商。我们搜索的Tri of将自我关注和卷积相结合优于所有独立的模型,在想象网分类上具有较少的拖鞋,自我关注比卷积更好。此外,在各种小型数据集上,我们观察对自我关注模型的劣等性能,但我们的小脚仍然能够匹配这种情况下的最佳操作员,卷积。我们的代码可在https://github.com/phj128/trionet提供。
translated by 谷歌翻译
Single Image Super-Resolution (SISR) tasks have achieved significant performance with deep neural networks. However, the large number of parameters in CNN-based met-hods for SISR tasks require heavy computations. Although several efficient SISR models have been recently proposed, most are handcrafted and thus lack flexibility. In this work, we propose a novel differentiable Neural Architecture Search (NAS) approach on both the cell-level and network-level to search for lightweight SISR models. Specifically, the cell-level search space is designed based on an information distillation mechanism, focusing on the combinations of lightweight operations and aiming to build a more lightweight and accurate SR structure. The network-level search space is designed to consider the feature connections among the cells and aims to find which information flow benefits the cell most to boost the performance. Unlike the existing Reinforcement Learning (RL) or Evolutionary Algorithm (EA) based NAS methods for SISR tasks, our search pipeline is fully differentiable, and the lightweight SISR models can be efficiently searched on both the cell-level and network-level jointly on a single GPU. Experiments show that our methods can achieve state-of-the-art performance on the benchmark datasets in terms of PSNR, SSIM, and model complexity with merely 68G Multi-Adds for $\times 2$ and 18G Multi-Adds for $\times 4$ SR tasks.
translated by 谷歌翻译
最近,社区对模型缩放的关注越来越多,并有助于开发具有广泛尺度的模型家族。当前的方法要么简单地采用单发NAS的方式来构建非结构性和不可缩放的模型家族,要么依靠手动固定的缩放策略来扩展不必要的最佳基础模型。在本文中,我们桥接了两个组件,并将Scalenet提出到共同搜索基础模型和缩放策略,以便缩放大型模型可以具有更有希望的性能。具体来说,我们设计了一个超级植物,以体现具有不同尺寸频谱(例如拖鞋)的模型。然后,可以通过基于马尔可夫链的进化算法与基本模型进行交互学习缩放策略,并概括以开发更大的模型。为了获得一个体面的超级植物,我们设计了一种分层抽样策略,以增强其训练充足并减轻干扰。实验结果表明,我们的缩放网络在各种失败的方面都具有显着的性能优势,但搜索成本至少降低了2.53倍。代码可在https://github.com/luminolx/scalenet上找到。
translated by 谷歌翻译
现有的光流估计器通常采用通常用于图像分类的网络体系结构作为提取人均功能的编码器。但是,由于任务之间的自然差异,用于图像分类的架构可能是最佳的流量估计。为了解决此问题,我们建议一种名为Falownas的神经体系结构搜索方法,以自动找到用于流估计任务的更好的编码器体系结构。我们首先设计一个合适的搜索空间,包括各种卷积运算符,并构建一个体重共享的超级网络,以有效评估候选体系结构。然后,为了更好地训练超级网络,我们提出了特征对齐蒸馏,该蒸馏利用训练有素的流量估计器来指导超级网络的训练。最后,利用资源约束的进化算法找到最佳体系结构(即子网络)。实验结果表明,从超级网络继承的权重的发现的结构达到了4.67 \%f1-able kitti上的误差,这是RAFT基线的8.4 \%降低,超过了先进的手工制作的型号GMA和AGFlow,同时降低模型的复杂性和延迟。源代码和训练有素的模型将在https://github.com/vdigpku/flownas中发布。
translated by 谷歌翻译
高效的视频架构是在具有有限计算资源的设备上部署视频识别系统的关键。不幸的是,现有的视频架构通常是计算密集的,不适合这些应用。最近的X3D工作通过沿着多个轴扩展手工制作的图像架构,介绍了一系列高效的视频模型系列,例如空间,时间,宽度和深度。虽然在概念上的大空间中操作,但x3d一次搜索一个轴,并且仅探索了一组总共30个架构,这不足以探索空间。本文绕过了现有的2D架构,并直接搜索了一个细粒度空间中的3D架构,其中共同搜索了块类型,滤波器编号,扩展比和注意力块。采用概率性神经结构搜索方法来有效地搜索如此大的空间。动力学和某事物的评估 - 某事-V2基准确认我们的AutoX3D模型在类似的拖鞋中的准确性高达1.3%的准确性优于现有的模型,并在达到类似的性能时降低计算成本高达X1.74。
translated by 谷歌翻译
在本文中,我们提出了MENAS,这是一种有效的基于多试剂进化的NAS方法,人类干预较少。具体而言,我们提出了一个扩大的搜索空间(Mobilenet3-MT),用于Imagenet-1K,并提高两个方面的搜索效率。首先,MENAS共同探索建筑和最佳修剪候选人(彩票),逐渐减少了人口中的平均模型。每种型号都经过培训,并由其彩票票取代,而不是首先搜索繁琐的网络然后进行修剪。其次,我们介绍了个人体重共享,该分享专门用于多重试验NAS,旨在通过分享父母和子女网络之间的权重来摊销培训成本。与超级网的重量共享相比,单个体重分享的排名一致性更为可靠,同时通过防止复杂的超级网训练易于实现。此外,为了使被困在小型模型中的进化过程正规化,在制定父群体时,我们保留了最大模型的小比例,这被证明有益于增强模型性能。广泛的实验结果证明了十分的优势。在ImagEnet-1K数据库上,MENA可实现80.5%的TOP-1准确性,而无需涉及知识蒸馏或更大的图像分辨率。代码和型号将可用。
translated by 谷歌翻译
最近,已经成功地应用于各种遥感图像(RSI)识别任务的大量基于深度学习的方法。然而,RSI字段中深度学习方法的大多数现有进步严重依赖于手动设计的骨干网络提取的特征,这严重阻碍了由于RSI的复杂性以及先前知识的限制而受到深度学习模型的潜力。在本文中,我们研究了RSI识别任务中的骨干架构的新设计范式,包括场景分类,陆地覆盖分类和对象检测。提出了一种基于权重共享策略和进化算法的一拍架构搜索框架,称为RSBNet,其中包括三个阶段:首先,在层面搜索空间中构造的超空网是在自组装的大型中预先磨削 - 基于集合单路径培训策略进行缩放RSI数据集。接下来,预先培训的SuperNet通过可切换识别模块配备不同的识别头,并分别在目标数据集上进行微调,以获取特定于任务特定的超网络。最后,我们根据没有任何网络训练的进化算法,搜索最佳骨干架构进行不同识别任务。对于不同识别任务的五个基准数据集进行了广泛的实验,结果显示了所提出的搜索范例的有效性,并证明搜索后的骨干能够灵活地调整不同的RSI识别任务并实现令人印象深刻的性能。
translated by 谷歌翻译
神经体系结构搜索(NAS)的主要挑战之一是有效地对体系结构的性能进行排名。绩效排名者的主流评估使用排名相关性(例如,肯德尔的tau),这对整个空间都同样关注。但是,NAS的优化目标是识别顶级体系结构,同时对搜索空间中其他体系结构的关注更少。在本文中,我们从经验和理论上都表明,标准化的累积累积增益(NDCG)对于排名者来说是一个更好的指标。随后,我们提出了一种新算法Acenas,该算法直接通过Lambdarank优化NDCG。它还利用体重共享NAS产生的弱标签来预先培训排名,以便进一步降低搜索成本。对12个NAS基准和大规模搜索空间进行的广泛实验表明,我们的方法始终超过SOTA NAS方法,精度提高了3.67%,搜索成本降低了8倍。
translated by 谷歌翻译