虽然近年来,在2D图像领域的攻击和防御中,许多努力已经探讨了3D模型的脆弱性。现有的3D攻击者通常在点云上执行点明智的扰动,从而导致变形的结构或异常值,这很容易被人类察觉。此外,它们的对抗示例是在白盒设置下产生的,当转移到攻击远程黑匣子型号时经常遭受低成功率。在本文中,我们通过提出一种新的难以察觉的转移攻击(ITA):1)难以察觉的3D点云攻击来自两个新的和具有挑战性的观点:1)难以察觉:沿着邻域表面的正常向量限制每个点的扰动方向,导致产生具有类似几何特性的示例,从而增强了难以察觉。 2)可转移性:我们开发了一个对抗性转变模型,以产生最有害的扭曲,并强制实施对抗性示例来抵抗它,从而提高其对未知黑匣子型号的可转移性。此外,我们建议通过学习更辨别的点云表示来培训更强大的黑盒3D模型来防御此类ITA攻击。广泛的评估表明,我们的ITA攻击比最先进的人更令人无法察觉和可转让,并验证我们的国防战略的优势。
translated by 谷歌翻译
随着各种3D安全关键应用的关注,点云学习模型已被证明容易受到对抗性攻击的影响。尽管现有的3D攻击方法达到了很高的成功率,但它们会以明显的扰动来深入研究数据空间,这可能会忽略几何特征。取而代之的是,我们从新的角度提出了点云攻击 - 图谱域攻击,旨在在光谱域中扰动图形转换系数,该系数对应于改变某些几何结构。具体而言,利用图形信号处理,我们首先通过图形傅立叶变换(GFT)自适应地将点的坐标转换为光谱域,以进行紧凑的表示。然后,我们基于我们建议通过可学习的图形光谱滤波器扰动GFT系数的几何结构的影响。考虑到低频组件主要有助于3D对象的粗糙形状,我们进一步引入了低频约束,以限制不察觉到的高频组件中的扰动。最后,通过将扰动的光谱表示形式转换回数据域,从而生成对抗点云。实验结果证明了拟议攻击的有效性,这些攻击既有易经性和攻击成功率。
translated by 谷歌翻译
3D动态点云提供了现实世界中的对象或运动场景的离散表示,这些对象已被广泛应用于沉浸式触发,自主驾驶,监视,\ textit {etc}。但是,从传感器中获得的点云通常受到噪声的扰动,这会影响下游任务,例如表面重建和分析。尽管为静态点云降级而做出了许多努力,但很少有作品解决动态点云降级。在本文中,我们提出了一种新型的基于梯度的动态点云降解方法,利用了梯度场估计的时间对应关系,这也是动态点云处理和分析中的基本问题。梯度场是嘈杂点云的对数概况函数的梯度,我们基于我们执行梯度上升,以使每个点收敛到下面的清洁表面。我们通过利用时间对应关系来估计每个表面斑块的梯度,在该时间对应关系中,在经典力学中搜索了在刚性运动的情况下搜索的时间对应贴片。特别是,我们将每个贴片视为一个刚性对象,它通过力在相邻框架的梯度场中移动,直到达到平衡状态,即当贴片上的梯度总和到达0时。由于梯度在该点更接近下面的表面,平衡贴片将适合下层表面,从而导致时间对应关系。最后,沿贴片中每个点的位置沿相邻帧中相应的贴片平均的梯度方向更新。实验结果表明,所提出的模型优于最先进的方法。
translated by 谷歌翻译
利用3D点云数据已经成为在面部识别和自动驾驶等许多领域部署人工智能的迫切需要。然而,3D点云的深度学习仍然容易受到对抗的攻击,例如迭代攻击,点转换攻击和生成攻击。这些攻击需要在严格的界限内限制对抗性示例的扰动,导致不切实际的逆势3D点云。在本文中,我们提出了对普遍的图形 - 卷积生成的对抗网络(ADVGCGAN)从头开始产生视觉上现实的对抗3D点云。具体地,我们使用图形卷积发电机和带有辅助分类器的鉴别器来生成现实点云,从真实3D数据学习潜在分布。不受限制的对抗性攻击损失纳入GaN的特殊逆势训练中,使得发电机能够产生对抗实例来欺骗目标网络。与现有的最先进的攻击方法相比,实验结果表明了我们不受限制的对抗性攻击方法的有效性,具有更高的攻击成功率和视觉质量。此外,拟议的Advgcan可以实现更好的防御模型和比具有强烈伪装的现有攻击方法更好的转移性能。
translated by 谷歌翻译
最近,3D深度学习模型已被证明易于对其2D对应物的对抗性攻击影响。大多数最先进的(SOTA)3D对抗性攻击对3D点云进行扰动。为了在物理场景中再现这些攻击,需要重建生成的对抗3D点云以网状,这导致其对抗效果显着下降。在本文中,我们提出了一个名为Mesh攻击的强烈的3D对抗性攻击,通过直接对3D对象的网格进行扰动来解决这个问题。为了利用最有效的基于梯度的攻击,介绍了一种可差异化的样本模块,其反向传播点云梯度以网格传播。为了进一步确保没有异常值和3D可打印的对抗性网状示例,采用了三种网格损耗。广泛的实验表明,所提出的方案优于SOTA 3D攻击,通过显着的保证金。我们还在各种防御下实现了SOTA表现。我们的代码可用于:https://github.com/cuge1995/mesh-attack。
translated by 谷歌翻译
Deep learning-based 3D object detectors have made significant progress in recent years and have been deployed in a wide range of applications. It is crucial to understand the robustness of detectors against adversarial attacks when employing detectors in security-critical applications. In this paper, we make the first attempt to conduct a thorough evaluation and analysis of the robustness of 3D detectors under adversarial attacks. Specifically, we first extend three kinds of adversarial attacks to the 3D object detection task to benchmark the robustness of state-of-the-art 3D object detectors against attacks on KITTI and Waymo datasets, subsequently followed by the analysis of the relationship between robustness and properties of detectors. Then, we explore the transferability of cross-model, cross-task, and cross-data attacks. We finally conduct comprehensive experiments of defense for 3D detectors, demonstrating that simple transformations like flipping are of little help in improving robustness when the strategy of transformation imposed on input point cloud data is exposed to attackers. Our findings will facilitate investigations in understanding and defending the adversarial attacks against 3D object detectors to advance this field.
translated by 谷歌翻译
Point cloud completion, as the upstream procedure of 3D recognition and segmentation, has become an essential part of many tasks such as navigation and scene understanding. While various point cloud completion models have demonstrated their powerful capabilities, their robustness against adversarial attacks, which have been proven to be fatally malicious towards deep neural networks, remains unknown. In addition, existing attack approaches towards point cloud classifiers cannot be applied to the completion models due to different output forms and attack purposes. In order to evaluate the robustness of the completion models, we propose PointCA, the first adversarial attack against 3D point cloud completion models. PointCA can generate adversarial point clouds that maintain high similarity with the original ones, while being completed as another object with totally different semantic information. Specifically, we minimize the representation discrepancy between the adversarial example and the target point set to jointly explore the adversarial point clouds in the geometry space and the feature space. Furthermore, to launch a stealthier attack, we innovatively employ the neighbourhood density information to tailor the perturbation constraint, leading to geometry-aware and distribution-adaptive modifications for each point. Extensive experiments against different premier point cloud completion networks show that PointCA can cause a performance degradation from 77.9% to 16.7%, with the structure chamfer distance kept below 0.01. We conclude that existing completion models are severely vulnerable to adversarial examples, and state-of-the-art defenses for point cloud classification will be partially invalid when applied to incomplete and uneven point cloud data.
translated by 谷歌翻译
Deep 3D point cloud models are sensitive to adversarial attacks, which poses threats to safety-critical applications such as autonomous driving. Robust training and defend-by-denoise are typical strategies for defending adversarial perturbations, including adversarial training and statistical filtering, respectively. However, they either induce massive computational overhead or rely heavily upon specified noise priors, limiting generalized robustness against attacks of all kinds. This paper introduces a new defense mechanism based on denoising diffusion models that can adaptively remove diverse noises with a tailored intensity estimator. Specifically, we first estimate adversarial distortions by calculating the distance of the points to their neighborhood best-fit plane. Depending on the distortion degree, we choose specific diffusion time steps for the input point cloud and perform the forward diffusion to disrupt potential adversarial shifts. Then we conduct the reverse denoising process to restore the disrupted point cloud back to a clean distribution. This approach enables effective defense against adaptive attacks with varying noise budgets, achieving accentuated robustness of existing 3D deep recognition models.
translated by 谷歌翻译
尽管在各种应用中取得了突出的性能,但点云识别模型经常遭受自然腐败和对抗性扰动的困扰。在本文中,我们深入研究了点云识别模型的一般鲁棒性,并提出了点云对比对抗训练(PointCat)。 PointCat的主要直觉是鼓励目标识别模型缩小清洁点云和损坏点云之间的决策差距。具体而言,我们利用有监督的对比损失来促进识别模型提取的超晶体特征的对齐和均匀性,并设计一对带有动态原型指南的集中式损失,以避免这些特征与其属于其属于其归属类别群的偏离。为了提供更具挑战性的损坏点云,我们对噪声生成器以及从头开始的识别模型进行了对手训练,而不是将基于梯度的攻击用作内部循环,例如以前的对手训练方法。全面的实验表明,在包括各种损坏的情况下,所提出的PointCat优于基线方法,并显着提高不同点云识别模型的稳健性,包括各向同性点噪声,LIDAR模拟的噪声,随机点掉落和对抗性扰动。
translated by 谷歌翻译
对于黑盒攻击,替代模型和受害者模型之间的差距通常很大,这表现为弱攻击性能。通过观察到,可以通过同时攻击多样的模型来提高对抗性示例的可传递性,并提出模型增强方法,这些模型通过使用转换图像模拟不同的模型。但是,空间域的现有转换不会转化为显着多样化的增强模型。为了解决这个问题,我们提出了一种新型的频谱模拟攻击,以针对正常训练和防御模型制作更容易转移的对抗性例子。具体而言,我们将频谱转换应用于输入,从而在频域中执行模型增强。从理论上讲,我们证明了从频域中得出的转换导致不同的频谱显着图,这是我们提出的指标,以反映替代模型的多样性。值得注意的是,我们的方法通常可以与现有攻击结合使用。 Imagenet数据集的广泛实验证明了我们方法的有效性,\ textit {e.g。},攻击了九个最先进的防御模型,其平均成功率为\ textbf {95.4 \%}。我们的代码可在\ url {https://github.com/yuyang-long/ssa}中获得。
translated by 谷歌翻译
与此同时,黑匣子对抗攻击已经吸引了令人印象深刻的注意,在深度学习安全领域的实际应用,同时,由于无法访问目标模型的网络架构或内部权重,非常具有挑战性。基于假设:如果一个例子对多种型号保持过逆势,那么它更有可能将攻击能力转移到其他模型,基于集合的对抗攻击方法是高效的,用于黑匣子攻击。然而,集合攻击的方式相当不那么调查,并且现有的集合攻击只是均匀地融合所有型号的输出。在这项工作中,我们将迭代集合攻击视为随机梯度下降优化过程,其中不同模型上梯度的变化可能导致众多局部Optima差。为此,我们提出了一种新的攻击方法,称为随机方差减少了整体(SVRE)攻击,这可以降低集合模型的梯度方差,并充分利用集合攻击。标准想象数据集的经验结果表明,所提出的方法可以提高对抗性可转移性,并且优于现有的集合攻击显着。
translated by 谷歌翻译
3D点云正在成为许多现实世界应用中的关键数据表示形式,例如自动驾驶,机器人技术和医学成像。尽管深度学习的成功进一步加速了物理世界中3D点云的采用,但深度学习因其易受对抗性攻击的脆弱性而臭名昭著。在这项工作中,我们首先确定最先进的经验防御,对抗性训练,由于梯度混淆,在适用于3D点云模型方面有一个重大限制。我们进一步提出了PointDP,这是一种纯化策略,利用扩散模型来防御3D对抗攻击。我们对六个代表性3D点云体系结构进行了广泛的评估,并利用10+强和适应性攻击来证明其较低的稳健性。我们的评估表明,在强烈攻击下,PointDP比最新的纯化方法实现了明显更好的鲁棒性。在不久的将来将包括与PointDP合并的随机平滑验证结果的结果。
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making black-box attacks feasible in real-world applications. Due to the threat of adversarial attacks, many methods have been proposed to improve the robustness. Several state-of-the-art defenses are shown to be robust against transferable adversarial examples. In this paper, we propose a translation-invariant attack method to generate more transferable adversarial examples against the defense models. By optimizing a perturbation over an ensemble of translated images, the generated adversarial example is less sensitive to the white-box model being attacked and has better transferability. To improve the efficiency of attacks, we further show that our method can be implemented by convolving the gradient at the untranslated image with a pre-defined kernel. Our method is generally applicable to any gradient-based attack method. Extensive experiments on the ImageNet dataset validate the effectiveness of the proposed method. Our best attack fools eight state-of-the-art defenses at an 82% success rate on average based only on the transferability, demonstrating the insecurity of the current defense techniques.
translated by 谷歌翻译
Deep neural networks are vulnerable to adversarial examples, which poses security concerns on these algorithms due to the potentially severe consequences. Adversarial attacks serve as an important surrogate to evaluate the robustness of deep learning models before they are deployed. However, most of existing adversarial attacks can only fool a black-box model with a low success rate. To address this issue, we propose a broad class of momentum-based iterative algorithms to boost adversarial attacks. By integrating the momentum term into the iterative process for attacks, our methods can stabilize update directions and escape from poor local maxima during the iterations, resulting in more transferable adversarial examples. To further improve the success rates for black-box attacks, we apply momentum iterative algorithms to an ensemble of models, and show that the adversarially trained models with a strong defense ability are also vulnerable to our black-box attacks. We hope that the proposed methods will serve as a benchmark for evaluating the robustness of various deep models and defense methods. With this method, we won the first places in NIPS 2017 Non-targeted Adversarial Attack and Targeted Adversarial Attack competitions.
translated by 谷歌翻译
基于转移的对手示例是最重要的黑匣子攻击类别之一。然而,在对抗性扰动的可转移性和难以察觉之间存在权衡。在此方向上的事先工作经常需要固定但大量的$ \ ell_p $ -norm扰动预算,达到良好的转移成功率,导致可察觉的对抗扰动。另一方面,目前的大多数旨在产生语义保留扰动的难以限制的对抗攻击患有对目标模型的可转移性较弱。在这项工作中,我们提出了一个几何形象感知框架,以产生具有最小变化的可转移的对抗性示例。类似于在统计机器学习中的模型选择,我们利用验证模型为$ \ ell _ {\ infty} $ - norm和不受限制的威胁模型中选择每个图像的最佳扰动预算。广泛的实验验证了我们对平衡令人难以置信的难以察觉和可转移性的框架的有效性。方法论是我们进入CVPR'21安全性AI挑战者的基础:对想象成的不受限制的对抗攻击,其中我们将第1位排名第1,559支队伍,并在决赛方面超过了亚军提交的提交4.59%和23.91%分别和平均图像质量水平。代码可在https://github.com/equationliu/ga-attack获得。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译
尽管最近在不同的应用程序方案中广泛部署了3D点云分类,但它仍然非常容易受到对抗攻击的影响。面对对抗性攻击,这增加了对3D模型的强大训练的重要性。基于我们对现有对抗性攻击的性能的分析,在输入数据的中和高频组件中发现了更多的对抗性扰动。因此,通过抑制训练阶段的高频含量,改善了针对对抗性示例的模型。实验表明,提出的防御方法降低了对PointNet,PointNet ++和DGCNN模型的六次攻击的成功率。特别是,与最先进的方法相比,Drop100攻击的平均分类精度在Drop100攻击中平均提高3.8%,而Drop200攻击的平均分类精度提高了3.8%。与其他可用方法相比,该方法还提高了原始数据集的模型精度。
translated by 谷歌翻译
Though CNNs have achieved the state-of-the-art performance on various vision tasks, they are vulnerable to adversarial examples -crafted by adding human-imperceptible perturbations to clean images. However, most of the existing adversarial attacks only achieve relatively low success rates under the challenging black-box setting, where the attackers have no knowledge of the model structure and parameters. To this end, we propose to improve the transferability of adversarial examples by creating diverse input patterns. Instead of only using the original images to generate adversarial examples, our method applies random transformations to the input images at each iteration. Extensive experiments on ImageNet show that the proposed attack method can generate adversarial examples that transfer much better to different networks than existing baselines. By evaluating our method against top defense solutions and official baselines from NIPS 2017 adversarial competition, the enhanced attack reaches an average success rate of 73.0%, which outperforms the top-1 attack submission in the NIPS competition by a large margin of 6.6%. We hope that our proposed attack strategy can serve as a strong benchmark baseline for evaluating the robustness of networks to adversaries and the effectiveness of different defense methods in the future. Code is available at https: //github.com/cihangxie/DI-2-FGSM .
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译