结构螺栓是在不同结构元件中使用的关键部件,例如光束柱连接和摩擦阻尼装置。结构螺栓中的夹紧力受到螺栓旋转的高度影响。关于螺栓旋转估计的大部分基于视觉的研究依赖于传统的计算机视觉算法,例如Hough变换以评估螺栓的静态图像。这需要仔细的图像预处理,并且在复杂的螺栓组件的情况下或在周围的物体和背景噪声存在下可能无法表现良好,从而阻碍了其现实世界的应用。在本研究中,提出了一种集成的实时检测轨迹方法,即RTDT-BOLT,以监测螺栓旋转角度。首先,建立并培训基于基于yolov3-tiny的基于yolov3-tiny的对象检测器以定位结构螺栓。然后,实现基于光流的目标无目标物体跟踪算法,以连续监测和量化结构螺栓的旋转。为了提高跟踪性能和跟踪期间的潜在照明改变,yolov3-tiny与光流跟踪算法集成在跟踪丢失时重新检测螺栓。进行广泛的参数研究以确定最佳的跟踪性能并检查潜在的限制。结果表明RTDT - 螺栓方法可以大大提高螺栓旋转的跟踪性能,这可以使用参数推荐范围实现超过90%的精度。
translated by 谷歌翻译
计算机视觉在智能运输系统(ITS)和交通监视中发挥了重要作用。除了快速增长的自动化车辆和拥挤的城市外,通过实施深层神经网络的实施,可以使用视频监视基础架构进行自动和高级交通管理系统(ATM)。在这项研究中,我们为实时交通监控提供了一个实用的平台,包括3D车辆/行人检测,速度检测,轨迹估算,拥塞检测以及监视车辆和行人的相互作用,都使用单个CCTV交通摄像头。我们适应了定制的Yolov5深神经网络模型,用于车辆/行人检测和增强的排序跟踪算法。还开发了基于混合卫星的基于混合卫星的逆透视图(SG-IPM)方法,用于摄像机自动校准,从而导致准确的3D对象检测和可视化。我们还根据短期和长期的时间视频数据流开发了层次结构的交通建模解决方案,以了解脆弱道路使用者的交通流量,瓶颈和危险景点。关于现实世界情景和与最先进的比较的几项实验是使用各种交通监控数据集进行的,包括从高速公路,交叉路口和城市地区收集的MIO-TCD,UA-DETRAC和GRAM-RTM,在不同的照明和城市地区天气状况。
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
遵循机器视觉系统在线自动化质量控制和检查过程的成功之后,这项工作中为两个不同的特定应用提供了一种对象识别解决方案,即,在医院准备在医院进行消毒的手术工具箱中检测质量控制项目,以及检测血管船体中的缺陷,以防止潜在的结构故障。该解决方案有两个阶段。首先,基于单镜头多伯克斯检测器(SSD)的特征金字塔体系结构用于改善检测性能,并采用基于地面真实的统计分析来选择一系列默认框的参数。其次,利用轻量级神经网络使用回归方法来实现定向检测结果。该方法的第一阶段能够检测两种情况下考虑的小目标。在第二阶段,尽管很简单,但在保持较高的运行效率的同时,检测细长目标是有效的。
translated by 谷歌翻译
我们提出了一种新的四管齐下的方法,在文献中首次建立消防员的情境意识。我们构建了一系列深度学习框架,彼此之叠,以提高消防员在紧急首次响应设置中进行的救援任务的安全性,效率和成功完成。首先,我们使用深度卷积神经网络(CNN)系统,以实时地分类和识别来自热图像的感兴趣对象。接下来,我们将此CNN框架扩展了对象检测,跟踪,分割与掩码RCNN框架,以及具有多模级自然语言处理(NLP)框架的场景描述。第三,我们建立了一个深入的Q学习的代理,免受压力引起的迷失方向和焦虑,能够根据现场消防环境中观察和存储的事实来制定明确的导航决策。最后,我们使用了一种低计算无监督的学习技术,称为张量分解,在实时对异常检测进行有意义的特征提取。通过这些临时深度学习结构,我们建立了人工智能系统的骨干,用于消防员的情境意识。要将设计的系统带入消防员的使用,我们设计了一种物理结构,其中处理后的结果被用作创建增强现实的投入,这是一个能够建议他们所在地的消防员和周围的关键特征,这对救援操作至关重要在手头,以及路径规划功能,充当虚拟指南,以帮助迷彩的第一个响应者恢复安全。当组合时,这四种方法呈现了一种新颖的信息理解,转移和综合方法,这可能会大大提高消防员响应和功效,并降低寿命损失。
translated by 谷歌翻译
基于无人机(UAV)基于无人机的视觉对象跟踪已实现了广泛的应用,并且由于其多功能性和有效性而引起了智能运输系统领域的越来越多的关注。作为深度学习革命性趋势的新兴力量,暹罗网络在基于无人机的对象跟踪中闪耀,其准确性,稳健性和速度有希望的平衡。由于开发了嵌入式处理器和深度神经网络的逐步优化,暹罗跟踪器获得了广泛的研究并实现了与无人机的初步组合。但是,由于无人机在板载计算资源和复杂的现实情况下,暹罗网络的空中跟踪仍然在许多方面都面临严重的障碍。为了进一步探索基于无人机的跟踪中暹罗网络的部署,这项工作对前沿暹罗跟踪器进行了全面的审查,以及使用典型的无人机板载处理器进行评估的详尽无人用分析。然后,进行板载测试以验证代表性暹罗跟踪器在现实世界无人机部署中的可行性和功效。此外,为了更好地促进跟踪社区的发展,这项工作分析了现有的暹罗跟踪器的局限性,并进行了以低弹片评估表示的其他实验。最后,深入讨论了基于无人机的智能运输系统的暹罗跟踪的前景。领先的暹罗跟踪器的统一框架,即代码库及其实验评估的结果,请访问https://github.com/vision4robotics/siamesetracking4uav。
translated by 谷歌翻译
Visual perception plays an important role in autonomous driving. One of the primary tasks is object detection and identification. Since the vision sensor is rich in color and texture information, it can quickly and accurately identify various road information. The commonly used technique is based on extracting and calculating various features of the image. The recent development of deep learning-based method has better reliability and processing speed and has a greater advantage in recognizing complex elements. For depth estimation, vision sensor is also used for ranging due to their small size and low cost. Monocular camera uses image data from a single viewpoint as input to estimate object depth. In contrast, stereo vision is based on parallax and matching feature points of different views, and the application of deep learning also further improves the accuracy. In addition, Simultaneous Location and Mapping (SLAM) can establish a model of the road environment, thus helping the vehicle perceive the surrounding environment and complete the tasks. In this paper, we introduce and compare various methods of object detection and identification, then explain the development of depth estimation and compare various methods based on monocular, stereo, and RDBG sensors, next review and compare various methods of SLAM, and finally summarize the current problems and present the future development trends of vision technologies.
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
面部特征跟踪是成像跳芭式(BCG)的关键组成部分,其中需要精确定量面部关键点的位移,以获得良好的心率估计。皮肤特征跟踪能够在帕金森病中基于视频的电机降解量化。传统的计算机视觉算法包括刻度不变特征变换(SIFT),加速强大的功能(冲浪)和LUCAS-KANADE方法(LK)。这些长期代表了最先进的效率和准确性,但是当存在常见的变形时,如图所示,如图所示,如此。在过去的五年中,深度卷积神经网络对大多数计算机视觉任务的传统方法表现优于传统的传统方法。我们提出了一种用于特征跟踪的管道,其应用卷积堆积的AutoEncoder,以将图像中最相似的裁剪标识到包含感兴趣的特征的参考裁剪。 AutoEncoder学会将图像作物代表到特定于对象类别的深度特征编码。我们在面部图像上培训AutoEncoder,并验证其在手动标记的脸部和手视频中通常验证其跟踪皮肤功能的能力。独特的皮肤特征(痣)的跟踪误差是如此之小,因为我们不能排除他们基于$ \ chi ^ 2 $ -test的手动标签。对于0.6-4.2像素的平均误差,我们的方法在所有情况下都表现出了其他方法。更重要的是,我们的方法是唯一一个不分歧的方法。我们得出的结论是,我们的方法为特征跟踪,特征匹配和图像配准比传统算法创建更好的特征描述符。
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
水果苍蝇是果实产量最有害的昆虫物种之一。在AlertTrap中,使用不同的最先进的骨干功能提取器(如MobiLenetv1和MobileNetv2)的SSD架构的实现似乎是实时检测问题的潜在解决方案。SSD-MobileNetv1和SSD-MobileNetv2表现良好并导致AP至0.5分别为0.957和1.0。YOLOV4-TINY优于SSD家族,在AP@0.5中为1.0;但是,其吞吐量速度略微慢。
translated by 谷歌翻译
宽阔的区域运动图像(瓦米)产生具有大量极小物体的高分辨率图像。目标物体在连续帧中具有大的空间位移。令人讨厌的图像的这种性质使对象跟踪和检测具有挑战性。在本文中,我们介绍了我们基于深度神经网络的组合对象检测和跟踪模型,即热图网络(HM-Net)。 HM-Net明显快于最先进的帧差异和基于背景减法的方法,而不会影响检测和跟踪性能。 HM-Net遵循基于对象的联合检测和跟踪范式。简单的热图的预测支持无限数量的同时检测。所提出的方法使用来自前一帧的两个连续帧和物体检测热图作为输入,这有助于帧之间的HM-Net监视器时空变化并跟踪先前预测的对象。尽管重复使用先前的物体检测热图作为基于生命的反馈的存储器元件,但它可能导致假阳性检测的意外浪涌。为了增加对误报和消除低置信度检测的方法的稳健性,HM-Net采用新的反馈滤波器和高级数据增强。 HM-Net优于最先进的WAMI移动对象检测和跟踪WPAFB数据集的跟踪方法,其96.2%F1和94.4%地图检测分数,同时在同一数据集上实现61.8%的地图跟踪分数。这种性能对应于F1,6.1%的地图分数的增长率为2.1%,而在追踪最先进的地图分数的地图分数为9.5%。
translated by 谷歌翻译
对人类对象相互作用的理解在第一人称愿景(FPV)中至关重要。遵循相机佩戴者操纵的对象的视觉跟踪算法可以提供有效的信息,以有效地建模此类相互作用。在过去的几年中,计算机视觉社区已大大提高了各种目标对象和场景的跟踪算法的性能。尽管以前有几次尝试在FPV域中利用跟踪器,但仍缺少对最先进跟踪器的性能的有条理分析。这项研究差距提出了一个问题,即应使用当前的解决方案``现成''还是应进行更多特定领域的研究。本文旨在为此类问题提供答案。我们介绍了FPV中单个对象跟踪的首次系统研究。我们的研究广泛分析了42个算法的性能,包括通用对象跟踪器和基线FPV特定跟踪器。分析是通过关注FPV设置的不同方面,引入新的绩效指标以及与FPV特定任务有关的。这项研究是通过引入Trek-150(由150个密集注释的视频序列组成的新型基准数据集)来实现的。我们的结果表明,FPV中的对象跟踪对当前的视觉跟踪器构成了新的挑战。我们强调了导致这种行为的因素,并指出了可能的研究方向。尽管遇到了困难,但我们证明了跟踪器为需要短期对象跟踪的FPV下游任务带来好处。我们预计,随着新的和FPV特定的方法学会得到研究,通用对象跟踪将在FPV中受欢迎。
translated by 谷歌翻译
从卷积神经网络的快速发展中受益,汽车牌照检测和识别的性能得到了很大的改善。但是,大多数现有方法分别解决了检测和识别问题,并专注于特定方案,这阻碍了现实世界应用的部署。为了克服这些挑战,我们提出了一个有效而准确的框架,以同时解决车牌检测和识别任务。这是一个轻巧且统一的深神经网络,可以实时优化端到端。具体而言,对于不受约束的场景,采用了无锚方法来有效检测车牌的边界框和四个角,这些框用于提取和纠正目标区域特征。然后,新型的卷积神经网络分支旨在进一步提取角色的特征而不分割。最后,将识别任务视为序列标记问题,这些问题通过连接派时间分类(CTC)解决。选择了几个公共数据集,包括在各种条件下从不同方案中收集的图像进行评估。实验结果表明,所提出的方法在速度和精度上都显着优于先前的最新方法。
translated by 谷歌翻译
水果和蔬菜的检测,分割和跟踪是精确农业的三个基本任务,实现了机器人的收获和产量估计。但是,现代算法是饥饿的数据,并非总是有可能收集足够的数据来运用最佳性能的监督方法。由于数据收集是一项昂贵且繁琐的任务,因此在农业中使用计算机视觉的能力通常是小企业无法实现的。在此背景下的先前工作之后,我们提出了一种初始弱监督的解决方案,以减少在精确农业应用程序中获得最新检测和细分所需的数据,在这里,我们在这里改进该系统并探索跟踪果实的问题果园。我们介绍了拉齐奥南部(意大利)葡萄的葡萄园案例,因为葡萄由于遮挡,颜色和一般照明条件而难以分割。当有一些可以用作源数据的初始标记数据(例如,葡萄酒葡萄数据)时,我们会考虑这种情况,但与目标数据有很大不同(例如表格葡萄数据)。为了改善目标数据的检测和分割,我们建议使用弱边界框标签训练分割算法,而对于跟踪,我们从运动算法中利用3D结构来生成来自已标记样品的新标签。最后,将两个系统组合成完整的半监督方法。与SOTA监督解决方案的比较表明,我们的方法如何能够训练以很少的标记图像和非常简单的标签来实现高性能的新型号。
translated by 谷歌翻译
室内视频中的头部检测是许多真实应用的重要组成部分。虽然深层模型在一般物体检测中取得了显着进展,但它们在复杂的室内场景中不足以满足。室内监控视频通常包括杂乱的背景对象,其中头部有小尺度和不同的姿势。在本文中,我们提出了运动感知伪暹罗网络(MPSN),一种端到端的方法,利用头部运动信息来引导深层模型来提取室内场景中的有效头特征。通过将相邻帧的像素明显差异作为辅助输入,MPSN有效地增强了人头运动信息并消除了背景中的无关物体。与现有方法相比,它在两个室内视频数据集中实现了卓越的性能。我们的实验表明,MPSN成功地抑制了静态背景对象,并突出了移动实例,尤其是室内视频中的人类头部。我们还比较不同的方法来捕获头部运动,这表明MPSN的简单性和灵活性。最后,为了验证MPSN的稳健性,我们对鲁棒模型选择的小扰动的数学解决方案进行对抗性实验。代码可在https://github.com/pl-share/mpsn获得。
translated by 谷歌翻译
这项研究开发了一个无人驾驶系统(UASS)的框架,以监测高层建筑项目中未受保护的边缘和开口附近的跌落危险系统。开发并测试了一个三步基于机器学习的框架,以检测UAS捕获的图像的护栏柱。首先,对护栏探测器进行了培训,以定位支撑护栏的职位的候选位置。由于从实际的工作现场收集的此过程中使用了图像,因此确定了几个错误检测。因此,在以下步骤中引入了其他约束,以滤除错误检测。其次,研究团队将水平线检测器应用于图像,以正确检测地板并删除离地板不近的检测。最后,由于每个帖子之间安装了护栏柱,它们之间的分布差异大致,因此它们之间的空间被估算并用于找到两个帖子之间最有可能的距离。研究团队使用了开发方法的各种组合来监视高层建筑项目的捕获图像中的护栏系统。比较精度和召回指标表明,级联分类器通过落地检测和护栏间距估计来取得更好的性能。研究结果表明,拟议的护栏识别系统可以改善护栏的评估,并促进安全工程师确定高层建筑项目中跌落危害的任务。
translated by 谷歌翻译
现在,诸如无人机之类的无人机,从捕获和目标检测的各种目的中,从Ariel Imagery等捕获和目标检测的各种目的很大使用。轻松进入这些小的Ariel车辆到公众可能导致严重的安全威胁。例如,可以通过使用无人机在公共公共场合中混合的间谍来监视关键位置。在手中研究提出了一种改进和高效的深度学习自治系统,可以以极大的精度检测和跟踪非常小的无人机。建议的系统由自定义深度学习模型Tiny Yolov3组成,其中一个非常快速的物体检测模型的口味之一,您只能构建并用于检测一次(YOLO)。物体检测算法将有效地检测无人机。与以前的Yolo版本相比,拟议的架构表现出显着更好的性能。在资源使用和时间复杂性方面观察到改进。使用召回和精度分别为93%和91%的测量来测量性能。
translated by 谷歌翻译
本文介绍了我们拦截更快的入侵者无人机的方法,这是受MBZIRC 2020挑战1.的启发1.通过利用对入侵者轨迹的形状的先验知识,我们可以计算拦截点。目标跟踪基于Yolov3微型卷积神经网络的图像处理,并结合使用饰品安装的ZED ZED迷你立体声摄像机的深度计算。我们使用摄像头的RGB和深度数据,设计降噪的直方图过滤器来提取目标的3D位置。获得目标位置的3D测量值用于计算图八形轨迹的位置,方向和大小,我们使用Bernoulli Lemniscate近似。一旦近似被认为是足够精确的,可以通过观察值和估计之间的距离来测量,我们将计算一个拦截点,以将拦截器无人机直接放在入侵者的路径上。根据MBZIRC竞争期间收集的经验,我们的方法已在模拟和现场实验中得到了验证。我们的结果证实,我们已经开发了一个有效的视觉感知模块,该模块可以提取以足以支持拦截计划的精确性来描述入侵者无人机运动的信息。在大多数模拟遭遇中,我们可以跟踪和拦截比拦截器快30%的目标。在非结构化环境中的相应测试产生了12个成功结果中的9个。
translated by 谷歌翻译
每年,AEDESAEGYPTI蚊子都感染了数百万人,如登录,ZIKA,Chikungunya和城市黄热病等疾病。战斗这些疾病的主要形式是通过寻找和消除潜在的蚊虫养殖场来避免蚊子繁殖。在这项工作中,我们介绍了一个全面的空中视频数据集,获得了无人驾驶飞行器,含有可能的蚊帐。使用识别所有感兴趣对象的边界框手动注释视频数据集的所有帧。该数据集被用于开发基于深度卷积网络的这些对象的自动检测系统。我们提出了通过在可以注册检测到的对象的时空检测管道的对象检测流水线中的融合来利用视频中包含的时间信息,这些时间是可以注册检测到的对象的,最大限度地减少最伪正和假阴性的出现。此外,我们通过实验表明使用视频比仅使用框架对马赛克组成马赛克更有利。使用Reset-50-FPN作为骨干,我们可以分别实现0.65和0.77的F $ _1 $ -70分别对“轮胎”和“水箱”的对象级别检测,说明了正确定位潜在蚊子的系统能力育种对象。
translated by 谷歌翻译