在手术室(OR)中,活动通常与其他典型的工作环境不同。特别是,外科医生经常受到多种心理组织的约束,可能会对他们的健康和表现造成负面影响。这通常归因于相关的认知工作量(CWL)的增加,该工作量是由于处理意外和重复性任务以及大量信息以及潜在风险的认知超载而导致的。在本文中,建议在多种四个不同的手术任务中对CWL的多模式识别提出了两种机器学习方法。首先,使用基于转移学习概念的模型来确定外科医生是否经历任何CWL。其次,卷积神经网络(CNN)使用此信息来识别与每个手术任务相关的不同类型的CWL。建议的多模式方法考虑来自脑电图(EEG),功能近红外光谱(FNIRS)和瞳孔眼直径的相邻信号。信号的串联允许在时间(时间)和通道位置(空间)方面进行复杂的相关性。数据收集是由多种感应的AI环境来执行的,用于在Harms Lab开发的手术任务$ \&$角色优化平台(Maestro)。为了比较拟议方法的性能,已经实施了许多最先进的机器学习技术。测试表明,所提出的模型的精度为93%。
translated by 谷歌翻译
尽管能够隔离视觉数据,但人类花了一些时间来检查一块,更不用说数千或数百万个样本了。深度学习模型在现代计算的帮助下有效地处理了相当大的信息。但是,他们可疑的决策过程引起了相当大的关注。最近的研究已经确定了一种新的方法,可以从EEG信号中提取图像特征,并将其与标准图像特征相结合。这些方法使深度学习模型更容易解释,并且还可以更快地将模型收敛。受最近研究的启发,我们开发了一种编码脑电图信号作为图像的有效方法,以促进使用深度学习模型对大脑信号的更微妙的理解。在此类编码方法中,我们使用两个变体对对应于39个图像类的编码EEG信号对六个受试者的分层数据集的基准精度为70%,这远高于现有工作。与纯净的深度学习方法的准确性稍好相比,我们的图像分类方法具有共同的EEG功能的精度为82%。然而,它证明了该理论的生存能力。
translated by 谷歌翻译
癫痫是在4000年全球出现回来的最常见的神经系统疾病之一。这几天它会影响大约5000万人的人。这种疾病的特征是复发癫痫发作。在过去的几十年里,可用于癫痫发作控制的治疗方法已经提高了很多关于医学技术领域的进步。脑电图(EEG)是一种广泛使用的技术,用于监测大脑活动,广泛流行的癫痫发作区域检测。它在手术前进行,并且还在在神经刺激装置中可用的时间操作预测癫痫发作。但在大多数情况下,视觉检查是通过神经病学家进行的,以检测和分类疾病的模式,但这需要大量的域名知识和经验。这一切依次对神经外部产生压力,并导致时间浪费,并降低了他们的准确性和效率。需要一些在信息技术领域的自动化系统,例如在深度学习中使用神经网络,可以帮助神经根学家。在本文中,提出了一种模型,可提供98.33%的准确性,可用于开发自动化系统。发达的系统将显着帮助神经科学家的表现。
translated by 谷歌翻译
工作记忆(WM)表示在脑海中存储的信息,是人类认知领域的一个基本研究主题。可以监测大脑的电活动的脑电图(EEG)已被广泛用于测量WM的水平。但是,关键的挑战之一是个体差异可能会导致无效的结果,尤其是当既定模型符合陌生主题时。在这项工作中,我们提出了一个具有空间注意力(CS-DASA)的跨主题深层适应模型,以概括跨科目的工作负载分类。首先,我们将EEG时间序列转换为包含空间,光谱和时间信息的多帧EEG图像。首先,CS-DASA中的主题共享模块从源和目标主题中接收多帧的EEG图像数据,并学习了共同的特征表示。然后,在特定于主题的模块中,实现了最大平均差异,以测量重现的内核希尔伯特空间中的域分布差异,这可以为域适应增加有效的罚款损失。此外,采用主题对象的空间注意机制专注于目标图像数据的判别空间特征。在包含13个受试者的公共WM EEG数据集上进行的实验表明,所提出的模型能够达到比现有最新方法更好的性能。
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
Seizure type identification is essential for the treatment and management of epileptic patients. However, it is a difficult process known to be time consuming and labor intensive. Automated diagnosis systems, with the advancement of machine learning algorithms, have the potential to accelerate the classification process, alert patients, and support physicians in making quick and accurate decisions. In this paper, we present a novel multi-path seizure-type classification deep learning network (MP-SeizNet), consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism. The objective of this study was to classify specific types of seizures, including complex partial, simple partial, absence, tonic, and tonic-clonic seizures, using only electroencephalogram (EEG) data. The EEG data is fed to our proposed model in two different representations. The CNN was fed with wavelet-based features extracted from the EEG signals, while the Bi-LSTM was fed with raw EEG signals to let our MP-SeizNet jointly learns from different representations of seizure data for more accurate information learning. The proposed MP-SeizNet was evaluated using the largest available EEG epilepsy database, the Temple University Hospital EEG Seizure Corpus, TUSZ v1.5.2. We evaluated our proposed model across different patient data using three-fold cross-validation and across seizure data using five-fold cross-validation, achieving F1 scores of 87.6% and 98.1%, respectively.
translated by 谷歌翻译
衡量心理工作量的主要原因是量化执行任务以预测人类绩效的认知成本。不幸的是,一种评估具有一般适用性的心理工作量的方法。这项研究提出了一种新型的自我监督方法,用于从脑电图数据中使用深度学习和持续的大脑率,即认知激活的指标,而无需人类声明性知识,从而从脑电图数据进行了精神负荷建模。该方法是可培训的卷积复发性神经网络,该神经网络可通过空间保留脑电图数据的光谱地形图训练,以适合大脑速率变量。发现证明了卷积层从脑电图数据中学习有意义的高级表示的能力,因为受试者内模型的测试平均绝对百分比误差平均为11%。尽管确实提高了其准确性,但增加了用于处理高级表示序列的长期期内存储层并不重要。发现指出,认知激活的高级高水平表示存在准稳定的块,因为它们可以通过卷积诱导,并且似乎随着时间的流逝而彼此依赖,从而直观地与大脑反应的非平稳性质相匹配。跨主体模型,从越来越多的参与者的数据诱导,因此包含更多的可变性,获得了与受试者内模型相似的精度。这突出了人们在人们之间诱发的高级表示的潜在普遍性,这表明存在非依赖于受试者的认知激活模式。这项研究通过为学者提供一种用于心理工作负载建模的新型计算方法来促进知识的体系,该方法旨在通常适用,不依赖于支持可复制性和可复制性的临时人工制作的模型。
translated by 谷歌翻译
基于脑电图(EEG)的脑生物识别技术已被越来越多地用于个人鉴定。传统的机器学习技术以及现代的深度学习方法已采用有希望的结果。在本文中,我们提出了EEG-BBNET,这是一个混合网络,该网络将卷积神经网络(CNN)与图形卷积神经网络(GCNN)集成在一起。 CNN在自动特征提取方面的好处以及GCNN通过图形表示在EEG电极之间学习连通性的能力被共同利用。我们检查了各种连通性度量,即欧几里得距离,皮尔逊的相关系数,相锁定值,相位滞后指数和RHO索引。在由各种脑部计算机界面(BCI)任务组成的基准数据集上评估了所提出的方法的性能,并将其与其他最先进的方法进行了比较。我们发现,使用会议内数据的平均正确识别率最高99.26%,我们的模型在事件相关电位(ERP)任务中的所有基线都优于所有基准。具有Pearson相关性和RHO指数的EEG-BBNET提供了最佳的分类结果。此外,我们的模型使用会议间和任务数据显示出更大的适应性。我们还研究了我们提出的模型的实用性,该模型的电极数量较少。额叶区域上的电极放置似乎最合适,性能损失最少。
translated by 谷歌翻译
近年来,神经科学家一直对脑部计算机界面(BCI)设备的开发感兴趣。患有运动障碍的患者可能会受益于BCIS作为通讯手段和恢复运动功能。脑电图(EEG)是评估神经元活性的最常用之一。在许多计算机视觉应用中,深度神经网络(DNN)都具有显着优势。为了最终使用DNN,我们在这里提出了一个浅神经网络,该网络主要使用两个卷积神经网络(CNN)层,其参数相对较少,并且快速从脑电图中学习光谱时期特征。我们将该模型与其他三个神经网络模型进行了比较,其深度不同于精神算术任务,该模型使用了针对患有运动障碍的患者和视觉功能下降的患者进行的眼神闭合状态。实验结果表明,浅CNN模型的表现优于所有其他模型,并达到了90.68%的最高分类精度。处理跨主题分类问题也更加健壮:准确性的标准偏差仅为3%,而不是传统方法的15.6%。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
脑电图(EEG)解码旨在识别基于非侵入性测量的脑活动的神经处理的感知,语义和认知含量。当应用于在静态,受控的实验室环境中获取的数据时,传统的EEG解码方法取得了适度的成功。然而,开放世界的环境是一个更现实的环境,在影响EEG录音的情况下,可以意外地出现,显着削弱了现有方法的鲁棒性。近年来,由于其在特征提取的卓越容量,深入学习(DL)被出现为潜在的解决方案。它克服了使用浅架构提取的“手工制作”功能或功能的限制,但通常需要大量的昂贵,专业标记的数据 - 并不总是可获得的。结合具有域特定知识的DL可能允许开发即使具有小样本数据,也可以开发用于解码大脑活动的鲁棒方法。虽然已经提出了各种DL方法来解决EEG解码中的一些挑战,但目前缺乏系统的教程概述,特别是对于开放世界应用程序。因此,本文为开放世界EEG解码提供了对DL方法的全面调查,并确定了有前途的研究方向,以激发现实世界应用中的脑电图解码的未来研究。
translated by 谷歌翻译
近年来,深度学习显示了广泛区域的潜力和效率,包括计算机视觉,图像和信号处理。然而,由于缺乏算法决策和结果的解释性,用户应用程序仍然存在转化挑战。这个黑匣子问题对于高风险应用程序(例如与医疗相关的决策制定)尤其有问题。当前的研究目标是设计一个可解释的深度学习系统,用于对脑电图的时间序列分类(EEG)进行睡眠阶段评分,以此作为设计透明系统的一步。我们已经开发了一个可解释的深神经网络,该网络包括基于内核的层,该层是基于人类专家在视觉分析记录的视觉分析中用于睡眠评分的一组原理。将基于内核的卷积层定义并用作系统的第一层,并可用于用户解释。训练有素的系统及其结果从脑电图信号的微观结构(例如训练的内核)以及每个内核对检测到的阶段的效果,宏观结构(例如阶段之间的过渡)中解释了四个级别。拟议的系统表现出比先前的研究更大的性能,而解释的结果表明,该系统学习了与专家知识一致的信息。
translated by 谷歌翻译
苏黎世认知语言处理语料库(Zuco)提供了来自两种读取范例,正常读取和特定任务读数的眼跟踪和脑电图信号。我们分析了机器学习方法是否能够使用眼睛跟踪和EEG功能对这两个任务进行分类。我们使用聚合的句子级别功能以及细粒度的单词级别来实现模型。我们在主题内和交叉对象评估方案中测试模型。所有模型都在Zuco 1.0和Zuco 2.0数据子集上进行测试,其特征在于不同的记录程序,因此允许不同的概括水平。最后,我们提供了一系列的控制实验,以更详细地分析结果。
translated by 谷歌翻译
由于癫痫发生是由于大脑的异常活性引起的,因此癫痫发作会影响您的大脑处理的任何过程。癫痫发作的一些体征和症状包括混乱,异常凝视以及快速,突然和无法控制的手动运动。癫痫发作检测方法涉及神经检查,血液检查,神经心理学检查和神经影像学方法。其中,神经影像学的方式受到了专业医生的极大关注。一种促进癫痫发作准确,快速诊断的方法是基于深度学习(DL)和神经成像方式采用计算机辅助诊断系统(CADS)。本文研究了利用神经影像学方式利用用于癫痫发作检测和预测的DL方法的全面概述。首先,讨论了用于使用神经影像模式的癫痫发作检测和预测的基于DL的CAD。此外,还包括了用于癫痫发作检测和预测的各种数据集的描述,预处理算法和DL模型。然后,已经介绍了有关康复工具的研究,其中包含脑部计算机接口(BCI),可植入,云计算,物联网(IoT),在现场可编程栅极阵列(FPGA)上的DL技术实现,等等。讨论部分是关于癫痫发作检测和预测研究之间的比较。使用神经影像模式和DL模型的癫痫发作检测和预测中最重要的挑战。此外,已经提出了数据集,DL,康复和硬件模型领域的未来工作建议。最后一部分致力于结论,并在该领域结合了最重要的发现。
translated by 谷歌翻译
通过脑电图信号的情绪分类取得了许多进步。但是,诸如缺乏数据和学习重要特征和模式之类的问题始终是具有在计算和预测准确性方面改进的领域。这项工作分析了基线机器学习分类器在DEAP数据集上的性能以及一种表格学习方法,该方法提供了最新的可比结果,从而利用了性能提升,这是由于其深度学习架构而无需部署重型神经网络。
translated by 谷歌翻译
One of the main challenges in electroencephalogram (EEG) based brain-computer interface (BCI) systems is learning the subject/session invariant features to classify cognitive activities within an end-to-end discriminative setting. We propose a novel end-to-end machine learning pipeline, EEG-NeXt, which facilitates transfer learning by: i) aligning the EEG trials from different subjects in the Euclidean-space, ii) tailoring the techniques of deep learning for the scalograms of EEG signals to capture better frequency localization for low-frequency, longer-duration events, and iii) utilizing pretrained ConvNeXt (a modernized ResNet architecture which supersedes state-of-the-art (SOTA) image classification models) as the backbone network via adaptive finetuning. On publicly available datasets (Physionet Sleep Cassette and BNCI2014001) we benchmark our method against SOTA via cross-subject validation and demonstrate improved accuracy in cognitive activity classification along with better generalizability across cohorts.
translated by 谷歌翻译
认识到人类的感情在日常沟通中发挥着关键作用。神经科学已经证明,不同的情绪状态存在于不同脑区,脑电图频带和颞戳中不同程度的激活。在本文中,我们提出了一种新颖的结构来探索情感认可的信息脑电图。所提出的模块,由PST-Integn表示,由位置,光谱和颞件注意力模块组成,用于探索更多辨别性EEG特征。具体地,位置注意模块是捕获在空间尺寸中的不同情绪刺激的激活区域。光谱和时间注意力模块分别分配不同频带和时间片的权重。我们的方法是自适应的,也可以符合其作为插入式模块的3D卷积神经网络(3D-CNN)。我们在两个现实世界数据集进行实验。 3D-CNN结合我们的模块实现了有希望的结果,并证明了PST-关注能够从脑电图中捕获稳定的情感识别模式。
translated by 谷歌翻译
A lack of driver's vigilance is the main cause of most vehicle crashes. Electroencephalography(EEG) has been reliable and efficient tool for drivers' drowsiness estimation. Even though previous studies have developed accurate and robust driver's vigilance detection algorithms, these methods are still facing challenges on following areas: (a) small sample size training, (b) anomaly signal detection, and (c) subject-independent classification. In this paper, we propose a generalized few-shot model, namely EEG-Fest, to improve aforementioned drawbacks. The EEG-Fest model can (a) classify the query sample's drowsiness with a few samples, (b) identify whether a query sample is anomaly signals or not, and (c) achieve subject independent classification. The proposed algorithm achieves state-of-the-art results on the SEED-VIG dataset and the SADT dataset. The accuracy of the drowsy class achieves 92% and 94% for 1-shot and 5-shot support samples in the SEED-VIG dataset, and 62% and 78% for 1-shot and 5-shot support samples in the SADT dataset.
translated by 谷歌翻译
传统的脑电脑接口(BCI)需要在使用之前为每个用户提供完整的数据收集,训练和校准阶段。近年来,已经开发了许多主题独立的(SI)BCI。与受试者依赖性(SD)方法相比,这些方法中的许多方法产生较弱的性能,有些方法是计算昂贵的。潜在的真实世界应用程序将极大地受益于更准确,紧凑,并计算高效的主题的BCI。在这项工作中,我们提出了一个名为CCSPNET(卷积公共空间模式网络)的新型主题独立的BCI框架,该框架被训练在大型脑电图(EEG)信号数据库中的电动机图像(MI)范例上,由400个试验组成每54名科目执行两班手机MI任务。所提出的框架应用小波核卷积神经网络(WKCNN)和时间卷积神经网络(TCNN),以表示和提取EEG信号的光谱特征。对于空间特征提取来实现公共空间模式(CSP)算法,并且通过密集的神经网络减少了CSP特征的数量。最后,类标签由线性判别分析(LDA)分类器确定。 CCSPNET评估结果表明,可以具有紧凑的BCI,可实现与复杂和计算昂贵的模型相当的SD和SI最先进的性能。
translated by 谷歌翻译
过去几十年来看,越来越多地采用的非侵入性神经影像学技术越来越大的进步,以检查人脑发展。然而,这些改进并不一定是更复杂的数据分析措施,能够解释功能性大脑发育的机制。例如,从单变量(大脑中的单个区域)转变为多变量(大脑中的多个区域)分析范式具有重要意义,因为它允许调查不同脑区之间的相互作用。然而,尽管对发育大脑区域之间的相互作用进行了多变量分析,但应用了人工智能(AI)技术,使分析不可解释。本文的目的是了解电流最先进的AI技术可以通知功能性大脑发展的程度。此外,还审查了哪种AI技术基于由发育认知神经科学(DCN)框架所定义的大脑发展的过程来解释他们的学习。这项工作还提出说明可解释的AI(Xai)可以提供可行的方法来调查功能性大脑发育,如DCN框架的假设。
translated by 谷歌翻译