今天的大部分AI系统都专注于使用自我关注机制和变压器架构在大量多样化的数据中实现令人印象深刻的性能收益。在本文中,我们建议使用外部注意机制增强变压器架构,以带来外部知识和背景。通过将外部信息集成到预测过程中,我们希望减少对更大的模型的需求,并增加AI系统的民主化。我们发现所提出的外部注意机制可以显着提高现有AI系统的性能,使从业者可以轻松地将基础AI模型自定义到许多不同的下游应用程序。特别是,我们专注于勤杂朗语推理的任务,展示所提出的外部注意机制可以增加现有的变压器模型,并显着提高模型的推理能力。拟议的系统,知识外部关注推理(Kear),达到了开放的铜商QA研究基准的人类奇偶校验,其准确性为89.4 \%,与人类准确性为88.9 \%。
translated by 谷歌翻译
预训练的语言模型(PTLM)已显示出在自然语言任务上表现良好。许多先前的作品都以通过知识图(KGS)标记的关系链接的实体的形式利用结构性常识来协助PTLM。检索方法使用kg作为单独的静态模块,该模块限制了覆盖范围,因为kgs包含有限的知识。生成方法训练PTLMS kg三倍以提高获得知识的规模。但是,对符号KG实体的培训限制了其在涉及自然语言文本的任务中的适用性,在这些任务中,它们忽略了整体上下文。为了减轻这种情况,我们提出了一个以句子为条件的常识性上下文化器(COSE-CO)作为输入,以使其在生成与输入文本的整体上下文相关的任务中通常可用。为了训练Cose-Co,我们提出了一个新的数据集,其中包括句子和常识知识对。 COSE-CO推断出的知识是多种多样的,并且包含了基础KG中不存在的新实体。我们增强了在多选质量质量检查和开放式常识性推理任务中产生的知识,从而改善了CSQA,ARC,QASC和OBQA数据集的当前最佳方法。我们还展示了其在改善释义生成任务的基线模型方面的适用性。
translated by 谷歌翻译
现有的kg增强模型用于问题回答主要专注于设计精心图形神经网络(GNN)以模拟知识图(KG)。但是,它们忽略了(i)有效地融合和推理过问题上下文表示和kg表示,并且(ii)在推理期间自动从嘈杂的KG中选择相关节点。在本文中,我们提出了一种新颖的型号,其通过LMS和GNN的联合推理和动态KGS修剪机制解决了上述限制。具体而言,ConntLK通过新的密集双向注意模块在LMS和GNN之间执行联合推理,其中每个问题令牌参加KG节点,每个KG节点都会参加问题令牌,并且两个模态表示熔断和通过多次熔断和更新。步互动。然后,动态修剪模块使用通过联合推理产生的注意重量来递归修剪无关的kg节点。我们在CommanSENSEQA和OpenBookQA数据集上的结果表明,我们的模态融合和知识修剪方法可以更好地利用相关知识来推理。
translated by 谷歌翻译
在维持预审预定序列模型的灵活性的同时,是否有利于常识性推理,这仍然是一个悬而未决的问题。为了调查这个问题,我们开发了生成的知识提示,该提示包括从语言模型中生成知识,然后在回答问题时提供知识作为附加输入。我们的方法不需要特定于任务的监督知识集成或访问结构化的知识库,但它可以提高四个常识性推理任务上的大规模,最先进的模型的性能,从而实现最先进-ART结果取决于数值常识(NumerSense),通用常识性(Commonsenseqa 2.0)和科学常识(QASC)基准。产生的知识促使大型语言模型是灵活的外部知识来源,以改善常识性推理。我们的代码可从https://github.com/liujch1998/gkp获得
translated by 谷歌翻译
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
translated by 谷歌翻译
深度学习模型在各种自然语言处理任务中设置了基准。然而,这些模型需要巨大的培训数据,这在许多实际问题中是不可行的。虽然各种技术如域适应,但是几个学习技术解决了这个问题,我们介绍了一种积极地将外部知识的新技术引入学习以解决低数据制度问题。我们提出了一种称为Actknow的技术,它基于知识图(KG)的“按需”在学习中,激发了知识图表(KG)的知识(QA)。通过从概念网络中注入世界知识,我们对基于文本的基于文本的变压器模型的临时挑战 - 在低数据制度中的变压器模型上显示了显着的改进。例如,通过仅使用20%的训练示例,我们分别证明了弧形挑战和OpenBookQA的准确性提高了4%。
translated by 谷歌翻译
Pre-trained Language Models (PLMs) which are trained on large text corpus through the self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Incorporating knowledge into PLMs has been tried to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight the focus of these two kinds of tasks. For NLU, we take several types of knowledge into account and divide them into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
translated by 谷歌翻译
使用从预先接受训练的语言模型(LMS)和知识图表(LMS)和知识图表(kgs)回答问题的问题提出了两个挑战:给定QA上下文(问答选择),方法需要(i)从大型千克识别相关知识,(ii)对QA上下文和kg进行联合推理。在这项工作中,我们提出了一种新的模型,QA-GNN,它通过两个关键创新解决了上述挑战:(i)相关评分,我们使用LMS来估计KG节点相对于给定的QA上下文的重要性,以及(ii)联合推理,我们将QA上下文和kg连接到联合图,并通过图形神经网络相互更新它们的表示。我们评估了QA基准的模型(CommanSeaseQA,OpenBookQA)和生物医学(MedQa-USMLE)域名。QA-GNN优于现有的LM和LM + kg模型,并表现出可解释和结构化推理的能力,例如,正确处理问题的否定。
translated by 谷歌翻译
Recent progress in pre-trained neural language models has significantly improved the performance of many natural language processing (NLP) tasks. In this paper we propose a new model architecture DeBERTa (Decoding-enhanced BERT with disentangled attention) that improves the BERT and RoBERTa models using two novel techniques. The first is the disentangled attention mechanism, where each word is represented using two vectors that encode its content and position, respectively, and the attention weights among words are computed using disentangled matrices on their contents and relative positions, respectively. Second, an enhanced mask decoder is used to incorporate absolute positions in the decoding layer to predict the masked tokens in model pre-training. In addition, a new virtual adversarial training method is used for fine-tuning to improve models' generalization. We show that these techniques significantly improve the efficiency of model pre-training and the performance of both natural language understand (NLU) and natural langauge generation (NLG) downstream tasks. Compared to RoBERTa-Large, a DeBERTa model trained on half of the training data performs consistently better on a wide range of NLP tasks, achieving improvements on MNLI by +0.9% (90.2% vs. 91.1%), on SQuAD v2.0 by +2.3% (88.4% vs. 90.7%) and RACE by +3.6% (83.2% vs. 86.8%). Notably, we scale up DeBERTa by training a larger version that consists of 48 Transform layers with 1.5 billion parameters. The significant performance boost makes the single DeBERTa model surpass the human performance on the SuperGLUE benchmark (Wang et al., 2019a) for the first time in terms of macro-average score (89.9 versus 89.8), and the ensemble DeBERTa model sits atop the SuperGLUE leaderboard as of January 6, 2021, outperforming the human baseline by a decent margin (90.3 versus 89.8). The pre-trained DeBERTa models and the source code were released at: https://github.com/microsoft/DeBERTa 1 .
translated by 谷歌翻译
最近与大型变压器的主要工作的主要重点是优化包装到模型参数中的信息量。在这项工作中,我们问了一个不同的问题:多峰变压器可以在他们推理中利用明确的知识吗?现有,主要是单峰,方法在知识检索范例下探讨了方法,随后回答预测,但留下了关于所使用的检索知识的质量和相关性的开放性问题,以及如何集成隐含和明确知识的推理过程。为了解决这些挑战,我们提出了一种新颖的模型 - 知识增强变压器(KAT) - 在OK-VQA的开放式多模式任务上实现了强大的最先进的结果(+6分)。我们的方法在结束到终端编码器 - 解码器架构中集成了隐式和显式知识,同时在答案生成期间仍然共同推理了两个知识源。在我们分析中提高了模型预测的可解释性,可以看到明确知识集成的额外好处。
translated by 谷歌翻译
Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as "fillin-the-blank" cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-theart pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at https: //github.com/facebookresearch/LAMA.
translated by 谷歌翻译
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present COMMONSENSEQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from CON-CEPTNET (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
translated by 谷歌翻译
视觉问题回答(VQA)通常需要对视觉概念和语言语义的理解,这取决于外部知识。大多数现有方法利用了预训练的语言模型或/和非结构化文本,但是这些资源中的知识通常不完整且嘈杂。有些方法更喜欢使用经常具有强化结构知识的知识图(kgs),但是研究仍然相当初步。在本文中,我们提出了Lako,这是一种知识驱动的VQA方法,通过后期的文本注射。为了有效地纳入外部kg,我们将三元三元转移到文本中,并提出一种晚期注射机制。最后,我们将VQA作为文本生成任务,并具有有效的编码器范式。在使用OKVQA数据集的评估中,我们的方法可实现最新的结果。
translated by 谷歌翻译
大型基于变压器的预训练的语言模型在各种知识密集的任务上取得了令人印象深刻的表现,并可以在其参数中捕获事实知识。我们认为,考虑到不断增长的知识和资源需求,在模型参数中存储大量知识是亚最佳选择。我们认为,更有效的替代方法是向模型提供对上下文相关的结构化知识的明确访问,并训练它以使用该知识。我们提出了LM核 - 实现这一目标的一般框架 - 允许从外部知识源对语言模型培训的\ textit {解耦},并允许后者更新而不会影响已经训练的模型。实验结果表明,LM核心获得外部知识,在知识探索任务上的最先进的知识增强语言模型中实现了重要而强大的优于性能。可以有效处理知识更新;并在两个下游任务上表现良好。我们还提出了一个彻底的错误分析,突出了LM核的成功和失败。
translated by 谷歌翻译
最近几天见证了针对预训练的语言模型(PTM)的各种知识注入模型。但是,大多数以前的研究都忽略了PTMS自己的能力,其能力存储在参数中。最近的一项研究观察到了饲料远期网络(FFN)中的知识神经元,该神经元负责表达事实知识。在这项工作中,我们提出了一个简单的模型,即Kformer,该模型利用PTMS中存储的知识和外部知识通过变压器FFN层中的知识注入。从经验上讲,两项知识密集型任务,常识性推理(即社会问题)和医学问题答案(即MEDQA-USMLE),表明Kformer可以比其他知识注入技术(例如关注或基于注意的注射)产生更好的性能。我们认为,提出的简单模型和经验发现可能对社区开发更强大的知识注入方法可能有所帮助。代码在https://github.com/zjunlp/kformer中可用。
translated by 谷歌翻译
我们研究了学习因果推理对程序文本的挑战,以回答“如果...”何时需要外常识知识。我们提出了一个新颖的多跳图推理模型,以1)有效地从大知识图中提取常识子图;2)通过推理从常识子图获得的表示以及问题与上下文之间的上下文相互作用来预测因果答案。我们评估了WIQA基准测试的模型,并与最近的模型相比实现了最先进的性能。
translated by 谷歌翻译
可以利用致辞知识来识别文本中的因果关系。在这项工作中,我们在Atomic2020中言语三元组,广泛的覆盖率致辞推理知识图表,到自然语言文本,并不断预先预留伯特普瑞赖林模型。我们评估了回答勤杂朗语言推理问题所产生的模型。我们的研究结果表明,通过致致通知推理知识增强了不断预付费的语言模型在两个致辞语言推理基准测试,COPA和BCOPA-CE上表现出我们的基线,而无需对基础模型的额外改进或使用质量增强的数据进行微调。
translated by 谷歌翻译
在有问题的回答需要常识的问题上,语言模型(例如,GPT-3)已用于生成表达有助于提高性能的背景知识的文本。然而,使用此类模型的成本很高。在这项工作中,我们对较小的语言模型产生有用的中间上下文,此处称为阐述。我们的框架在更新两个语言模型之间交替使用 - 阐述生成器和一个答案预测变量 - 允许每个语言都影响彼此。我们的模型使用少于GPT-3的参数的0.5%优于具有相似尺寸的替代方案,并在四个常识性问题上回答基准测试的GPT-3上的差距缩小。人类评估表明,生成的阐述的质量很高。
translated by 谷歌翻译
语言模型(LM)是否可以通过固有的关系推理能力在知识库中的地面问题解决方案(QA)任务?尽管以前仅使用LMS的模型在许多质量检查任务上都看到了一些成功,但最新的方法包括知识图(KG),以补充LMS的逻辑驱动的隐式知识。但是,有效从结构化数据(例如KGS)中提取信息,使LMS保持开放性问题,并且当前模型依靠图形技术来提取知识。在本文中,我们建议仅利用LMS将基于知识的问题的语言和知识与灵活性,覆盖范围和结构化推理相结合。具体而言,我们设计了一种知识构建方法,该方法可以通过动态跳跃来检索相关背景,该方法比传统的基于GNN的技术表达了更全面的。我们设计了一种深层融合机制,以进一步弥合语言和知识之间交换瓶颈的信息。广泛的实验表明,我们的模型始终证明了其对CommenSensenSENSENSESQA基准测试的最先进性能,从而展示了仅利用LMS将LMS稳健地质量质量质量质量质量固定到知识库的可能性。
translated by 谷歌翻译
Despite the success of large language models (LLMs) in various natural language processing (NLP) tasks, the stored knowledge in these models may inevitably be incomplete, out-of-date, or incorrect. This motivates the need to utilize external knowledge to assist LLMs. Unfortunately, current methods for incorporating external knowledge often require additional training or fine-tuning, which can be costly and may not be feasible for LLMs. To address this issue, we propose a novel post-processing approach, rethinking with retrieval (RR), which retrieves relevant external knowledge based on the decomposed reasoning steps obtained from the chain-of-thought (CoT) prompting. This lightweight approach does not require additional training or fine-tuning and is not limited by the input length of LLMs. We evaluate the effectiveness of RR through extensive experiments with GPT-3 on three complex reasoning tasks: commonsense reasoning, temporal reasoning, and tabular reasoning. Our results show that RR can produce more faithful explanations and improve the performance of LLMs.
translated by 谷歌翻译