线性时间不变的状态空间模型(SSM)是工程和统计数据的经典模型,最近通过结构化状态空间序列模型(S4)证明,在机器学习中非常有前途。 S4的核心成分涉及将SSM状态矩阵初始化为称为HIPPO矩阵的特定矩阵,这对于S4处理长序列的能力在经验上很重要。但是,S4使用的特定矩阵实际上是在特定时间变化的动态系统中得出的,并且将此矩阵用作时间不变的SSM没有已知的数学解释。因此,S4模拟远程依赖性的理论机制实际上仍无法解释。我们得出了河马框架的更一般和直观的公式,该框架将S4作为对指数型的Legendre多项式的分解提供了简单的数学解释,解释了其捕获长依赖性的能力。我们的概括引入了理论上丰富的SSM类,还使我们能够为其他碱基(例如傅立叶基础)得出更直观的S4变体,并解释了训练S4的其他方面,例如如何初始化重要的时间表参数。这些见解将S4的性能提高到远程竞技场基准的86%,在最困难的Path-X任务中,S4的性能为96%。
translated by 谷歌翻译
最近已证明状态空间模型(SSM)是深度学习层非常有效的,它是序列模型(例如RNN,CNN或变压器)的有前途替代方案。第一个显示这种潜力的版本是S4模型,它通过使用称为HIPPO矩阵的规定状态矩阵对涉及长期依赖性的任务特别有效。尽管这具有可解释的数学机制来建模长期依赖性,但它引入了一种自定义表示和算法,可能难以实施。另一方面,最新的S4变体称为DSS,表明将状态矩阵完全对角线限制在使用基于近似S4矩阵的特定初始化时,仍然可以保留原始模型的性能。这项工作旨在系统地了解如何参数化和初始化此类对角线状态空间模型。虽然从经典的结果来看,几乎所有SSM都具有等效的对角线形式,但我们表明初始化对于性能至关重要。我们通过证明S4矩阵的对角线限制出人意料地在无限状态尺寸的极限中恢复了相同的内核来解释为什么DSS在数学上起作用。我们还系统地描述了参数化和计算对角线SSM的各种设计选择,并执行对这些选择的影响的受控经验研究。我们的最终型号S4D是S4的简单对角线版本,其内核计算仅需要2行代码,并且几乎在所有设置中都与S4相当地执行,并具有最新的图像,音频和医疗时间序列域的结果,在远程竞技场基准中平均为85%。
translated by 谷歌翻译
序列建模的一个中心目标是设计一个单个原则模型,该模型可以解决各种方式和任务,尤其是在远程依赖方面的序列数据。尽管包括RNN,CNN和Transformers在内的传统模型具有用于捕获长期依赖性的专业变体,但它们仍然很难扩展到长时间的10000美元或更多步骤。通过模拟基本状态空间模型(SSM)\(x'(t)= ax(t)= ax(t) + bu(t),y(t)= cx(t) + du(t) + du(t)\ ), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically.但是,该方法具有过度的计算和内存需求,使其无法作为一般序列建模解决方案。我们根据SSM的新参数化提出了结构化状态空间序列模型(S4),并表明它可以比以前的方法更有效地计算出其理论强度。我们的技术涉及对\(a \)进行低级校正的调节,从而使其对角度稳定,并将SSM降低到库奇内核的精心研究的计算中。 S4在各种既定的基准测试范围内取得了强劲的经验结果,包括(i)在顺序CIFAR-10上的91 \%精度,没有数据增强或辅助损失,与较大的2-D Resnet相当,(ii)实质上关闭。在图像和语言建模任务上与变形金刚的差距,同时在远程竞技场基准的每个任务上执行每一代$ 60 \ times $ $(iii)sota,包括求解所有先前工作的挑战性path-x任务,而所有先前工作的长度为16K,同时与所有竞争对手一样高效。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
有效地对远程依赖性建模是序列建模的重要目标。最近,使用结构化状态空间序列(S4)层的模型在许多远程任务上实现了最先进的性能。 S4层将线性状态空间模型(SSM)与深度学习技术结合在一起,并利用HIPPO框架进行在线功能近似以实现高性能。但是,该框架导致了架构约束和计算困难,使S4方法变得复杂,可以理解和实施。我们重新审视这样的想法,即遵循河马框架对于高性能是必要的。具体而言,我们替换了许多独立的单输入单输出(SISO)SSM的库S4层与一个多输入的多输出(MIMO)SSM一起使用,并具有降低的潜在尺寸。 MIMO系统的缩小潜在维度允许使用有效的并行扫描,从而简化了将S5层应用于序列到序列转换所需的计算。此外,我们将S5 SSM的状态矩阵初始化,其近似与S4 SSMS使用的河马级矩阵近似,并表明这是MIMO设置的有效初始化。 S5与S4在远程任务上的表现相匹配,包括在远程竞技场基准的套件中平均达到82.46%,而S4的80.48%和最佳的变压器变体的61.41%。
translated by 谷歌翻译
We introduce a novel gated recurrent unit (GRU) with a weighted time-delay feedback mechanism in order to improve the modeling of long-term dependencies in sequential data. This model is a discretized version of a continuous-time formulation of a recurrent unit, where the dynamics are governed by delay differential equations (DDEs). By considering a suitable time-discretization scheme, we propose $\tau$-GRU, a discrete-time gated recurrent unit with delay. We prove the existence and uniqueness of solutions for the continuous-time model, and we demonstrate that the proposed feedback mechanism can help improve the modeling of long-term dependencies. Our empirical results show that $\tau$-GRU can converge faster and generalize better than state-of-the-art recurrent units and gated recurrent architectures on a range of tasks, including time-series classification, human activity recognition, and speech recognition.
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
在本文中,我们研究了与具有多种激活函数的浅神经网络相对应的变异空间的近似特性。我们介绍了两个主要工具,用于估计这些空间的度量熵,近似率和$ n $宽度。首先,我们介绍了平滑参数化词典的概念,并在非线性近似速率,度量熵和$ n $ widths上给出了上限。上限取决于参数化的平滑度。该结果适用于与浅神经网络相对应的脊功能的字典,并且在许多情况下它们的现有结果改善了。接下来,我们提供了一种方法,用于下限度量熵和$ n $ widths的变化空间,其中包含某些类别的山脊功能。该结果给出了$ l^2 $ approximation速率,度量熵和$ n $ widths的变化空间的急剧下限具有界变化的乙状结激活函数。
translated by 谷歌翻译
我们研究了趋势过滤的多元版本,称为Kronecker趋势过滤或KTF,因为设计点以$ D $维度形成格子。 KTF是单变量趋势过滤的自然延伸(Steidl等,2006; Kim等人,2009; Tibshirani,2014),并通过最大限度地减少惩罚最小二乘问题,其罚款术语总和绝对(高阶)沿每个坐标方向估计参数的差异。相应的惩罚运算符可以编写单次趋势过滤惩罚运营商的Kronecker产品,因此名称Kronecker趋势过滤。等效,可以在$ \ ell_1 $ -penalized基础回归问题上查看KTF,其中基本功能是下降阶段函数的张量产品,是一个分段多项式(离散样条)基础,基于单变量趋势过滤。本文是Sadhanala等人的统一和延伸结果。 (2016,2017)。我们开发了一套完整的理论结果,描述了$ k \ grone 0 $和$ d \ geq 1 $的$ k ^ {\ mathrm {th}} $ over kronecker趋势过滤的行为。这揭示了许多有趣的现象,包括KTF在估计异构平滑的功能时KTF的优势,并且在$ d = 2(k + 1)$的相位过渡,一个边界过去(在高维对 - 光滑侧)线性泡沫不能完全保持一致。我们还利用Tibshirani(2020)的离散花键来利用最近的结果,特别是离散的花键插值结果,使我们能够将KTF估计扩展到恒定时间内的任何偏离晶格位置(与晶格数量的大小无关)。
translated by 谷歌翻译
通过建立神经网络和内核方法之间的联系,无限宽度极限阐明了深度学习的概括和优化方面。尽管它们的重要性,但这些内核方法的实用性在大规模学习设置中受到限制,因为它们(超)二次运行时和内存复杂性。此外,大多数先前关于神经内核的作品都集中在relu激活上,这主要是由于其受欢迎程度,但这也是由于很难计算此类内核来进行一般激活。在这项工作中,我们通过提供进行一般激活的方法来克服此类困难。首先,我们编译和扩展激活功能的列表,该函数允许精确的双重激活表达式计算神经内核。当确切的计算未知时,我们提出有效近似它们的方法。我们提出了一种快速的素描方法,该方法近似于任何多种多层神经网络高斯过程(NNGP)内核和神经切线核(NTK)矩阵,以实现广泛的激活功能,这超出了常见的经过分析的RELU激活。这是通过显示如何使用任何所需激活函​​数的截短的Hermite膨胀来近似神经内核来完成的。虽然大多数先前的工作都需要单位球体上的数据点,但我们的方法不受此类限制的影响,并且适用于$ \ Mathbb {r}^d $中的任何点数据集。此外,我们为NNGP和NTK矩阵提供了一个子空间嵌入,具有接近输入的距离运行时和接近最佳的目标尺寸,该目标尺寸适用于任何\ EMPH {均质}双重激活功能,具有快速收敛的Taylor膨胀。从经验上讲,关于精确的卷积NTK(CNTK)计算,我们的方法可实现$ 106 \ times $速度,用于在CIFAR-10数据集上的5层默特网络的近似CNTK。
translated by 谷歌翻译
指数族在机器学习中广泛使用,包括连续和离散域中的许多分布(例如,通过SoftMax变换,Gaussian,Dirichlet,Poisson和分类分布)。这些家庭中的每个家庭的分布都有固定的支持。相比之下,对于有限域而言,最近在SoftMax稀疏替代方案(例如Sparsemax,$ \ alpha $ -entmax和Fusedmax)的稀疏替代方案中导致了带有不同支持的分布。本文基于几种技术贡献,开发了连续分布的稀疏替代方案:首先,我们定义了$ \ omega $ regultion的预测图和任意域的Fenchel-young损失(可能是无限或连续的)。对于线性参数化的家族,我们表明,Fenchel-Young损失的最小化等效于统计的矩匹配,从而概括了指数家族的基本特性。当$ \ omega $是带有参数$ \ alpha $的Tsallis negentropy时,我们将获得````trabormed rompential指数)'',其中包括$ \ alpha $ -entmax和sparsemax和sparsemax($ \ alpha = 2 $)。对于二次能量函数,产生的密度为$ \ beta $ -Gaussians,椭圆形分布的实例,其中包含特殊情况,即高斯,双重量级,三人级和epanechnikov密度,我们为差异而得出了差异的封闭式表达式, Tsallis熵和Fenchel-Young损失。当$ \ Omega $是总变化或Sobolev正常化程序时,我们将获得Fusedmax的连续版本。最后,我们引入了连续的注意机制,从\ {1、4/3、3/3、3/2、2 \} $中得出有效的梯度反向传播算法。使用这些算法,我们证明了我们的稀疏连续分布,用于基于注意力的音频分类和视觉问题回答,表明它们允许参加时间间隔和紧凑区域。
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
高斯过程可以说是空间统计中最重要的模型类别。他们编码有关建模功能的先前信息,可用于精确或近似贝叶斯推断。在许多应用中,尤其是在物理科学和工程中,以及在诸如地统计和神经科学等领域,对对称性的不变性是人们可以考虑的先前信息的最基本形式之一。高斯工艺与这种对称性的协方差的不变性导致了对此类空间平稳性概念的最自然概括。在这项工作中,我们开发了建设性和实用的技术,用于在在对称的背景下产生的一大批非欧基人空间上构建固定的高斯工艺。我们的技术使(i)以实用的方式计算(i)计算在此类空间上定义的先验和后高斯过程中的协方差内核和(ii)。这项工作分为两部分,每个部分涉及不同的技术考虑:第一部分研究紧凑的空间,而第二部分研究的非紧密空间具有某些结构。我们的贡献使我们研究的非欧亚人高斯流程模型与标准高斯流程软件包中可用的良好计算技术兼容,从而使从业者可以访问它们。
translated by 谷歌翻译
我们根据不可逆统计力学的莫里兹万齐(MZ)形式主义开发了深度学习的新表述。新的公式建立在深神经网络和离散随机动力学系统之间的众所周知的二元性上,它使我们能够通过网络通过网络直接向前和向后传播关注数量的(条件期望和概率密度函数)。操作员方程。这种新方程可用作开发深神经网络的新有效参数化的起点,并提供了一个新的框架来通过操作理论方法研究深入学习。所提出的深度学习的MZ表述自然引入了一个新概念,即神经网络的记忆,该概念在低维建模和参数化中起着基本作用。通过使用收缩映射理论,我们开发了足够的条件,以使神经网络的记忆随着层数的数量而衰减。这使我们可以严格地将深网络转换为浅网络,例如,通过减少每层神经元的数量(使用投影操作员)或减少层总数(使用内存操作员的衰减属性)。
translated by 谷歌翻译
内核方法是机器学习中最流行的技术之一,使用再现内核希尔伯特空间(RKHS)的属性来解决学习任务。在本文中,我们提出了一种新的数据分析框架,与再现内核Hilbert $ C ^ * $ - 模块(rkhm)和rkhm中的内核嵌入(kme)。由于RKHM包含比RKHS或VVRKHS)的更丰富的信息,因此使用RKHM的分析使我们能够捕获和提取诸如功能数据的结构属性。我们向RKHM展示了rkhm理论的分支,以适用于数据分析,包括代表性定理,以及所提出的KME的注射性和普遍性。我们还显示RKHM概括RKHS和VVRKHS。然后,我们提供采用RKHM和提议的KME对数据分析的具体程序。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译