给定一个较小的培训数据集和学习算法,要达到目标验证或测试性能需要多少数据?这个问题至关重要,在诸如自动驾驶或医学成像之类的应用中,收集数据昂贵且耗时。高估或低估数据需求会带来大量费用,而预算可以避免。关于神经缩放定律的先前工作表明,幂律函数可以符合验证性能曲线并将其推断为较大的数据集大小。我们发现,这并不能立即转化为估计所需数据集大小以满足目标性能的更困难的下游任务。在这项工作中,我们考虑了一系列的计算机视觉任务,并系统地研究了一个概括功能功能的功能家族,以便更好地估算数据需求。最后,我们表明,结合调整的校正因子并在多个回合中收集会显着提高数据估计器的性能。使用我们的准则,从业人员可以准确估算机器学习系统的数据要求,以节省开发时间和数据采集成本。
translated by 谷歌翻译
近年来,深度学习的显着进步主要是由于规模的改进而驱动,在该规模上,更大的模型在较大的数据集上进行了更长的时间表的培训。为了从经验上预测规模的好处,我们主张基于外推损失的更严格的方法,而不是报告最合适的(插值)参数。然后,我们提出了一种从学习曲线可靠地估算缩放定律参数的配方。我们证明,除了来自大型基础评估基准的任务外,除了大型域中,包括图像分类,神经机器翻译(NMT)和语言建模,包括图像分类,神经机器翻译(NMT)和语言建模,它比以前的方法更准确地推断出更准确的方法。最后,我们发布了一个由90个评估任务组成的基准数据集,以促进该领域的研究。
translated by 谷歌翻译
在我们与正在使用当今汽车系统的领域专家合作的经验中,我们遇到的一个常见问题是我们所说的“不切实际的期望” - 当用户通过嘈杂的数据获取过程面临非常具有挑战性的任务时,同时被期望实现机器学习(ML)的精度非常高。其中许多是从一开始就失败的。在传统的软件工程中,通过可行性研究解决了此问题,这是开发任何软件系统之前必不可少的一步。在本文中,我们介绍了Snoopy,目的是支持数据科学家和机器学习工程师在构建ML应用之前进行系统和理论上建立的可行性研究。我们通过估计基本任务的不可还原错误(也称为贝叶斯错误率(BER))来解决此问题,这源于用于训练或评估ML模型工件的数据集中的数据质量问题。我们设计了一个实用的贝叶斯误差估计器,该估计值与计算机视觉和自然语言处理中的6个数据集(具有不同级别的其他实际和合成噪声)上的基线可行性研究候选者进行了比较。此外,通过将我们的系统可行性研究和其他信号包括在迭代标签清洁过程中,我们在端到端实验中证明了用户如何能够节省大量的标签时间和货币努力。
translated by 谷歌翻译
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration nonstochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
translated by 谷歌翻译
Learning curves provide insight into the dependence of a learner's generalization performance on the training set size. This important tool can be used for model selection, to predict the effect of more training data, and to reduce the computational complexity of model training and hyperparameter tuning. This review recounts the origins of the term, provides a formal definition of the learning curve, and briefly covers basics such as its estimation. Our main contribution is a comprehensive overview of the literature regarding the shape of learning curves. We discuss empirical and theoretical evidence that supports well-behaved curves that often have the shape of a power law or an exponential. We consider the learning curves of Gaussian processes, the complex shapes they can display, and the factors influencing them. We draw specific attention to examples of learning curves that are ill-behaved, showing worse learning performance with more training data. To wrap up, we point out various open problems that warrant deeper empirical and theoretical investigation. All in all, our review underscores that learning curves are surprisingly diverse and no universal model can be identified.
translated by 谷歌翻译
Progress on object detection is enabled by datasets that focus the research community's attention on open challenges. This process led us from simple images to complex scenes and from bounding boxes to segmentation masks. In this work, we introduce LVIS (pronounced 'el-vis'): a new dataset for Large Vocabulary Instance Segmentation. We plan to collect ∼2 million high-quality instance segmentation masks for over 1000 entry-level object categories in 164k images. Due to the Zipfian distribution of categories in natural images, LVIS naturally has a long tail of categories with few training samples. Given that state-of-the-art deep learning methods for object detection perform poorly in the low-sample regime, we believe that our dataset poses an important and exciting new scientific challenge. LVIS is available at http://www.lvisdataset.org.
translated by 谷歌翻译
我们开发了一种新的原则性算法,用于估计培训数据点对深度学习模型的行为的贡献,例如它做出的特定预测。我们的算法估计了AME,该数量量衡量了将数据点添加到训练数据子集中的预期(平均)边际效应,并从给定的分布中采样。当从均匀分布中采样子集时,AME将还原为众所周知的Shapley值。我们的方法受因果推断和随机实验的启发:我们采样了训练数据的不同子集以训练多个子模型,并评估每个子模型的行为。然后,我们使用套索回归来基于子集组成共同估计每个数据点的AME。在稀疏假设($ k \ ll n $数据点具有较大的AME)下,我们的估计器仅需要$ O(k \ log n)$随机的子模型培训,从而改善了最佳先前的Shapley值估算器。
translated by 谷歌翻译
现代机器学习系统越来越多地以广泛的个人数据收集为特征,尽管回报降低并增加了这种做法的社会成本。然而,数据最小化是欧盟一般数据保护法规('GDPR')中列出的核心数据保护原则之一,并要求仅处理足够,相关且仅限于必要物品的个人数据。但是,由于缺乏技术解释,该原则的采用有限。在这项工作中,我们以机器学习和法律的文献为基础提出FIDO,这是抑制数据过度收集的框架。 Fido学会了基于与系统性能相关的数据最小化的解释来限制数据收集。具体而言,Fido通过迭代更新性能曲线的估计值或数据集大小和性能之间的关系,从而提供了数据收集,以停止标准。 FIDO通过分段功率定律技术估算性能曲线,该技术在整个数据收集过程中分别对算法性能的不同阶段进行建模。经验实验表明,该框架会产生准确的性能曲线和数据收集,从而在数据集中停止标准并功能采集算法。我们进一步证明,许多其他曲线家庭系统地高估了其他数据的回报。在设计数据最小化框架时,我们的调查结果和分析提供了对相关考虑因素的更深入的见解,包括主动功能获取对单个用户的影响以及用户特定数据最小化的可行性。我们以实施数据最小化的实用建议得出结论。
translated by 谷歌翻译
We introduce a new setting, optimize-and-estimate structured bandits. Here, a policy must select a batch of arms, each characterized by its own context, that would allow it to both maximize reward and maintain an accurate (ideally unbiased) population estimate of the reward. This setting is inherent to many public and private sector applications and often requires handling delayed feedback, small data, and distribution shifts. We demonstrate its importance on real data from the United States Internal Revenue Service (IRS). The IRS performs yearly audits of the tax base. Two of its most important objectives are to identify suspected misreporting and to estimate the "tax gap" -- the global difference between the amount paid and true amount owed. Based on a unique collaboration with the IRS, we cast these two processes as a unified optimize-and-estimate structured bandit. We analyze optimize-and-estimate approaches to the IRS problem and propose a novel mechanism for unbiased population estimation that achieves rewards comparable to baseline approaches. This approach has the potential to improve audit efficacy, while maintaining policy-relevant estimates of the tax gap. This has important social consequences given that the current tax gap is estimated at nearly half a trillion dollars. We suggest that this problem setting is fertile ground for further research and we highlight its interesting challenges. The results of this and related research are currently being incorporated into the continual improvement of the IRS audit selection methods.
translated by 谷歌翻译
我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the chal-
translated by 谷歌翻译
在高维预测设置中,可靠地估计测试性能仍然具有挑战性。为了应对这一挑战,提出了一个新颖的性能估计框架。该框架称为Learn2Evaluate,是基于学习曲线的,它通过拟合平滑的单调曲线将测试性能描绘为样本量的函数。与常用的性能估计方法相比,Learn2esvaluate具有多个优势。首先,学习曲线提供了学习者的图形概述。该概述有助于评估添加培训样本的潜在优势,并且比固定子样本大小的性能估计值更完整地比较学习者。其次,学习曲线促进在总样本量而不是子样本大小的情况下估计性能。第三,LEALLE2ALE2允许计算理论上合理且有用的较低置信度结合。此外,可以通过执行偏置校正来拧紧这种结合。通过模拟研究和对OMICS数据的应用来说明LEAL2评论的好处。
translated by 谷歌翻译
深度学习的最近历史一直是成就之一:从游戏中的人类胜利到图像分类,语音识别,翻译和其他任务的世界领先表现。但是,这一进展带来了对计算能力的渴望。本文分类了这种依赖性的程度,表明各种应用程序的进展非常依赖于计算能力的增加。推断向前的信仰表明,沿当前线的进步正在经济,技术和环境上迅速变得不可持续。因此,在这些应用程序中的持续进展将需要更大的计算方法,这要么必须从变化到深度学习或转移到其他机器学习方法。
translated by 谷歌翻译
It is widely believed that given the same labeling budget, active learning algorithms like uncertainty sampling achieve better predictive performance than passive learning (i.e. uniform sampling), albeit at a higher computational cost. Recent empirical evidence suggests that this added cost might be in vain, as uncertainty sampling can sometimes perform even worse than passive learning. While existing works offer different explanations in the low-dimensional regime, this paper shows that the underlying mechanism is entirely different in high dimensions: we prove for logistic regression that passive learning outperforms uncertainty sampling even for noiseless data and when using the uncertainty of the Bayes optimal classifier. Insights from our proof indicate that this high-dimensional phenomenon is exacerbated when the separation between the classes is small. We corroborate this intuition with experiments on 20 high-dimensional datasets spanning a diverse range of applications, from finance and histology to chemistry and computer vision.
translated by 谷歌翻译
机器学习模型的概括对数据,模型和学习算法具有复杂的依赖性。我们研究训练和测试性能,以及它们在不同数据集样本上的差异给出的概括差距,以理解其``典型''行为。我们得出了差距的表达式,作为模型之间协方差的函数参数分布和列车损耗以及平均测试性能的另一种表达,显示了测试概括仅取决于数据平均参数分布和数据平均损失。我们显示,对于大型模型参数分布,修改的概括差距为始终是非负的。通过进一步专门针对由随机梯度下降(SGD)产生的参数分布,以及一些近似值和建模考虑,我们能够预测有关通用差距和模型训练和测试性能如何变化为一个方面的一些方面SGD噪声的功能。我们基于RESNET体系结构对CIFAR10分类任务进行经验评估这些预测。
translated by 谷歌翻译
主动学习(AL)是一个有希望的ML范式,有可能解析大型未标记数据并有助于降低标记数据可能令人难以置信的域中的注释成本。最近提出的基于神经网络的AL方法使用不同的启发式方法来实现这一目标。在这项研究中,我们证明,在相同的实验环境下,不同类型的AL算法(基于不确定性,基于多样性和委员会)产生了与随机采样基线相比的不一致增长。通过各种实验,控制了随机性来源,我们表明,AL算法实现的性能指标方差可能会导致与先前报道的结果不符的结果。我们还发现,在强烈的正则化下,AL方法在各种实验条件下显示出比随机采样基线的边缘或没有优势。最后,我们以一系列建议进行结论,以了解如何使用新的AL算法评估结果,以确保在实验条件下的变化下结果可再现和健壮。我们共享我们的代码以促进AL评估。我们认为,我们的发现和建议将有助于使用神经网络在AL中进行可重复的研究。我们通过https://github.com/prateekmunjal/torchal开源代码
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
普通交叉验证(CV)等方法,如k倍交叉验证或Monte-Carlo交叉验证估计学习者的预测性能,通过重复在给定数据的大部分数据和对剩余数据上测试的大部分中进行训练。这些技术有两个主要缺点。首先,它们可以在大型数据集上不必要地慢。其次,除了估计最终性能之外,它们几乎没有进入验证算法的学习过程中的见解。在本文中,我们提出了一种基于学习曲线(LCCV)的验证的新方法。 LCCV迭代地增加用于训练的实例数量而不是创建火车测试分裂。在模型选择的背景下,它丢弃了不太可能成为竞争的模型。我们在从自动化基准测试的67个数据集上运行大规模的实验,并经验显示使用LCCV超过90%的案例,导致使用5/10倍的CV相似的性能(最多1.5%)。然而,它平均产生超过20%的大量运行时间减少。此外,它提供了重要的见解,例如允许评估获取更多数据的益处。这些结果与Automl领域的其他进步正交。
translated by 谷歌翻译
自动数据收集方案的扩散和传感器的进步正在增加我们能够实时监控的数据量。但是,鉴于高注册成本和质量检查所需的时间,数据通常以未标记的形式获得。这正在促进使用主动学习来开发软传感器和预测模型。在生产中,通过评估未标记数据的信息内容来收集标签,而不是进行随机检查以获取产品信息。文献中已经提出了一些有关回归的查询策略框架,但大多数重点都专门用于基于静态池的场景。在这项工作中,我们为基于流的方案提出了一种新的策略,在该方案中,将实例顺序提供给学习者,该实例必须立即决定是否执行质量检查以获取标签或丢弃实例。该方法受到最佳实验设计理论的启发,决策过程的迭代方面是通过对未标记数据点的信息设定阈值来解决的。使用数值模拟和田纳西州伊士曼工艺模拟器评估所提出的方法。结果证实,选择提出的算法建议的示例可以更快地减少预测误差。
translated by 谷歌翻译