The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work. However, the role of large autoregressive transformers in generating machine-paraphrased plagiarism and their detection is still developing in the literature. This work explores T5 and GPT-3 for machine-paraphrase generation on scientific articles from arXiv, student theses, and Wikipedia. We evaluate the detection performance of six automated solutions and one commercial plagiarism detection software and perform a human study with 105 participants regarding their detection performance and the quality of generated examples. Our results suggest that large models can rewrite text humans have difficulty identifying as machine-paraphrased (53% mean acc.). Human experts rate the quality of paraphrases generated by GPT-3 as high as original texts (clarity 4.0/5, fluency 4.2/5, coherence 3.8/5). The best-performing detection model (GPT-3) achieves a 66% F1-score in detecting paraphrases.
translated by 谷歌翻译
We demonstrate that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even becoming competitive with prior state-ofthe-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous nonsparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks. We also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora.
translated by 谷歌翻译
BERT等语言模型的兴起允许高质量的文本释义。这是学术完整性的问题,因为很难区分原始和机器生成的内容。我们提出了一种由依赖于变压器架构的最近语言模型组成的基准。我们的贡献促进了对解释检测系统的未来研究,因为它提供了一系列对齐的原始和解剖文件,了解其结构,具有最先进系统的分类实验,我们将我们的调查结果公开提供。
translated by 谷歌翻译
雇用措施恳求抄袭文本的措施是对学术诚信的严重威胁。要启用检测机释录的文本,我们会评估五个预先训练的单词嵌入模型的有效性与机器学习分类器和最先进的神经语言模型相结合。我们分析了研究论文,毕业论文和维基百科文章的预印刷品,我们使用不同的工具SpinBot和Spinnerchief释放。最佳的表演技术,啰素,平均F1得分为80.99%(F1 = 99.68%,纺纱病例的F1 = 71.64%),而人类评估员均达到纺纱病例的F1 = 78.4%,F1 = 65.6%的纺纱病例。我们表明,自动分类减轻了广泛使用的文本匹配系统的缺点,例如金风格和Plagscan。为了促进未来的研究,所有数据,代码和两个展示我们贡献的Web应用程序都公开使用。
translated by 谷歌翻译
Training learnable metrics using modern language models has recently emerged as a promising method for the automatic evaluation of machine translation. However, existing human evaluation datasets in text simplification are limited by a lack of annotations, unitary simplification types, and outdated models, making them unsuitable for this approach. To address these issues, we introduce the SIMPEVAL corpus that contains: SIMPEVAL_ASSET, comprising 12K human ratings on 2.4K simplifications of 24 systems, and SIMPEVAL_2022, a challenging simplification benchmark consisting of over 1K human ratings of 360 simplifications including generations from GPT-3.5. Training on SIMPEVAL_ASSET, we present LENS, a Learnable Evaluation Metric for Text Simplification. Extensive empirical results show that LENS correlates better with human judgment than existing metrics, paving the way for future progress in the evaluation of text simplification. To create the SIMPEVAL datasets, we introduce RANK & RATE, a human evaluation framework that rates simplifications from several models in a list-wise manner by leveraging an interactive interface, which ensures both consistency and accuracy in the evaluation process. Our metric, dataset, and annotation toolkit are available at https://github.com/Yao-Dou/LENS.
translated by 谷歌翻译
这项研究讨论了半监督学习的影响与验证的语言模型,以生成数据到文本。当还补充大规模语言模型时,尚不清楚半监督学习是否仍然有用。这项研究的目的是通过将仅补充语言模型的数据到文本系统与两个数据到文本系统进行比较,这些系统通过数据增强或伪标记的半固定学习方法而富含数据。结果表明,半监督学习会导致多样性指标的得分更高。在输出质量方面,使用伪标记方法扩展数据到文本系统的训练集确实提高了文本质量分数,但是数据增强方法在没有训练设置扩展的情况下得出了与系统相似的分数。这些结果表明,即使也存在语言模型,半监督的学习方法也可以增强产出质量和多样性。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
In this work, we present an evaluation of smaller BLOOM model variants (350m/560m and 1b3/1b7) on various natural language processing tasks. This includes GLUE - language understanding, prompt-based zero-shot and few-shot text classification and extraction, question answering, prompt-based text generation, and multi-lingual text classification to understand model strengths/weaknesses and behavior. Empirical results show that BLOOM variants under-perform on all GLUE tasks (except WNLI), question-answering, and text generation. The variants bloom for WNLI, with an accuracy of 56.3%, and for prompt-based few-shot text extraction on MIT Movies and ATIS datasets. The BLOOM variants on average have 7% greater accuracy over GPT-2 and GPT-Neo models on Director and Airline Name extraction from MIT Movies and ATIS datasets, respectively.
translated by 谷歌翻译
Winograd架构挑战 - 一套涉及代词参考消歧的双句话,似乎需要使用致辞知识 - 是由2011年的赫克托勒维克斯提出的。到2019年,基于大型预先训练的变压器的一些AI系统基于语言模型和微调这些问题,精度优于90%。在本文中,我们审查了Winograd架构挑战的历史并评估了其重要性。
translated by 谷歌翻译
最近的研究利用了先进的生成语言模型来生成自然语言解释(NLE),以了解某个文本可能会令人讨厌。我们提出了一系列解释提示方法,灵感来自思想链研究\ cite {wei2022chain},以生成高质量的nle,以实现隐式仇恨言论。我们基于选定的主流预训练的语言模型(PLM)建立基准,包括GPT-2,GPT-NEO,OPT,T5和BART,以及来自词汇,语义和忠实方面的各种评估指标。为了进一步评估人类感知产生的NLE的质量,我们雇用人类注释者来评估生成的NLE的信息性和清晰度。然后,我们检查哪种自动评估指标可以最好地与人类通知的信息性和清晰度度量分数相关。
translated by 谷歌翻译
即使在高度发达的国家,多达15-30%的人口只能理解使用基本词汇编写的文本。他们对日常文本的理解是有限的,这阻止了他们在社会中发挥积极作用,并就医疗保健,法律代表或民主选择做出明智的决定。词汇简化是一项自然语言处理任务,旨在通过更简单地替换复杂的词汇和表达方式来使每个人都可以理解文本,同时保留原始含义。在过去的20年中,它引起了极大的关注,并且已经针对各种语言提出了全自动词汇简化系统。该领域进步的主要障碍是缺乏用于构建和评估词汇简化系统的高质量数据集。我们提出了一个新的基准数据集,用于英语,西班牙语和(巴西)葡萄牙语中的词汇简化,并提供有关数据选择和注释程序的详细信息。这是第一个可直接比较三种语言的词汇简化系统的数据集。为了展示数据集的可用性,我们将两种具有不同体系结构(神经与非神经)的最先进的词汇简化系统适应所有三种语言(英语,西班牙语和巴西葡萄牙语),并评估他们的表演在我们的新数据集中。为了进行更公平的比较,我们使用多种评估措施来捕获系统功效的各个方面,并讨论其优势和缺点。我们发现,最先进的神经词汇简化系统优于所有三种语言中最先进的非神经词汇简化系统。更重要的是,我们发现最先进的神经词汇简化系统对英语的表现要比西班牙和葡萄牙语要好得多。
translated by 谷歌翻译
Recent lay language generation systems have used Transformer models trained on a parallel corpus to increase health information accessibility. However, the applicability of these models is constrained by the limited size and topical breadth of available corpora. We introduce CELLS, the largest (63k pairs) and broadest-ranging (12 journals) parallel corpus for lay language generation. The abstract and the corresponding lay language summary are written by domain experts, assuring the quality of our dataset. Furthermore, qualitative evaluation of expert-authored plain language summaries has revealed background explanation as a key strategy to increase accessibility. Such explanation is challenging for neural models to generate because it goes beyond simplification by adding content absent from the source. We derive two specialized paired corpora from CELLS to address key challenges in lay language generation: generating background explanations and simplifying the original abstract. We adopt retrieval-augmented models as an intuitive fit for the task of background explanation generation, and show improvements in summary quality and simplicity while maintaining factual correctness. Taken together, this work presents the first comprehensive study of background explanation for lay language generation, paving the path for disseminating scientific knowledge to a broader audience. CELLS is publicly available at: https://github.com/LinguisticAnomalies/pls_retrieval.
translated by 谷歌翻译
In the last year, new models and methods for pretraining and transfer learning have driven striking performance improvements across a range of language understanding tasks. The GLUE benchmark, introduced a little over one year ago, offers a single-number metric that summarizes progress on a diverse set of such tasks, but performance on the benchmark has recently surpassed the level of non-expert humans, suggesting limited headroom for further research. In this paper we present SuperGLUE, a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, a software toolkit, and a public leaderboard. SuperGLUE is available at super.gluebenchmark.com.
translated by 谷歌翻译
语言是人类交流的主要工具,其中幽默是最有吸引力的部分之一。使用计算机,又称自然语言生成(NLG)的人类产生自然语言,已广泛用于对话系统,聊天机器人,机器翻译以及计算机AID创建,例如Idea Generations,剧本。但是,自然语言的幽默方面相对不足,尤其是在预训练的语言模型时代。在这项工作中,我们旨在初步测试NLG是否可以像人类一样产生幽默。我们构建了一个新的数据集,该数据集由众多数字化的中国可笑的串扰脚本(称为c $^3 $简称),该脚本适用于1800年代以来名为“ Xiangsheng”的流行中国表演艺术。 (为了方便非中国扬声器,我们在本文中称为“ Xiangsheng”的“ Crosstalk”。)我们基准了各种一代方法,包括训练seq2seq,微调中级PLMS和大型PLMS(大型PLMS)(有无微调)。此外,我们还进行了人类评估,表明1)大规模预处理在很大程度上提高了串扰的产生质量; 2)即使是从最佳PLM产生的脚本也远非我们的期望,只有65%的人类创建的串扰质量。我们得出结论,使用大型PLM可以在很大程度上改善幽默的产生,但仍处于起步阶段。 \ url {https://github.com/anonno2/crosstalk-generation}公开可用数据和基准代码。
translated by 谷歌翻译
在回答问题时,人类会利用跨不同模式可用的信息来综合一致,完整的思想链(COT)。在深度学习模型(例如大规模语言模型)的情况下,这个过程通常是黑匣子。最近,科学问题基准已用于诊断AI系统的多跳推理能力和解释性。但是,现有数据集无法为答案提供注释,或仅限于仅文本模式,小尺度和有限的域多样性。为此,我们介绍了科学问题答案(SQA),这是一个新的基准,由〜21k的多模式多种选择问题组成,其中包含各种科学主题和答案的注释,并提供相应的讲座和解释。我们进一步设计语言模型,以学习将讲座和解释作为思想链(COT),以模仿回答SQA问题时的多跳上推理过程。 SQA在语言模型中展示了COT的实用性,因为COT将问题的答案绩效提高了1.20%的GPT-3和3.99%的unifiedqa。我们还探索了模型的上限,以通过喂食输入中的那些来利用解释;我们观察到它将GPT-3的少量性能提高了18.96%。我们的分析进一步表明,与人类类似的语言模型受益于解释,从较少的数据中学习并仅使用40%的数据实现相同的性能。
translated by 谷歌翻译
迄今为止对文本生成的评估主要集中在依次创建的内容上,而不是对文本的改进。但是,写作自然是一个迭代和增量过程,需要在不同的模块化技能上进行专业知识,例如修复过时的信息或使样式更加一致。即便如此,对模型执行这些技能和编辑能力的模型能力的全面评估仍然很少。这项工作介绍了EditeVal:基于指导的,基准和评估套件,该套件利用现有的现有和新数据集自动评估编辑功能,例如使文本更具凝聚力和释义。我们评估了几种预训练的模型,这表明指令和同伴表现最好,但是大多数基准都落在监督的SOTA以下,尤其是在中和和更新信息时。我们的分析还表明,用于编辑任务的常用指标并不总是很好地关联,并且对具有最高性能的提示的优化并不一定带来对不同模型的最强鲁棒性。通过发布此基准和公开可用的排行榜挑战,我们希望在开发能够迭代和更可控制的编辑模型中解锁未来的研究。
translated by 谷歌翻译
GPT-3显示了培训的大规模语言模型(LMS)的卓越情调学习能力,培训数十亿规模数据。在这里,我们解决了GPT-3纸张报告的一些剩余问题,例如非英语LM,不同大小模型的性能,以及最近引入的迅速优化对上下文学习的效果。为实现这一目标,我们介绍了HyperClova,一个韩国VPT-3的韩国变体训练在一个以韩国为中心的560b标准的令牌。通过我们的韩国特定标记化,HyperClova与我们的培训配置增强,显示了韩国各种下游任务的最先进的上下游零射击和几秒钟学习表演。此外,我们展示了基于及时的学习的性能优势,并演示如何集成到迅速的工程管道中。然后,我们讨论了通过引入Hyperclova Studio,互动提示工程界面向ML的非专家提供AI原型设计能力来实现No Code AI范例的可能性。最后,我们展示了我们具有三个成功的内部应用程序的方法的潜力。
translated by 谷歌翻译
我们建议并探讨可以将语言模型作为社会科学研究中特定人类亚人群的有效代理进行研究的可能性。人工智能工具的实践和研究应用有时受到有问题的偏见(例如种族主义或性别歧视)的限制,这些偏见通常被视为模型的统一特性。我们表明,一个这样的工具中的“算法偏见”(GPT-3语言模型)既是细粒度又是人口统计相关的,这意味着适当的条件会导致其准确地仿真来自各种人类的响应分布亚组。我们将此属性称为“算法忠诚度”,并在GPT-3中探索其范围。我们通过将模型调节在美国进行的多项大型调查中的数千个社会人口统计背景故事中调节,从而创建“硅样本”。然后,我们比较硅和人类样品,以证明GPT-3中包含的信息远远超出了表面相似性。它是细微的,多方面的,并反映了特征人类态度的思想,态度和社会文化背景之间的复杂相互作用。我们建议,具有足够算法的忠诚度的语言模型构成了一种新颖而有力的工具,可以促进各种学科的人类和社会的理解。
translated by 谷歌翻译
As natural language processing (NLP) for gender bias becomes a significant interdisciplinary topic, the prevalent data-driven techniques such as large-scale language models suffer from data inadequacy and biased corpus, especially for languages with insufficient resources such as Chinese. To this end, we propose a Chinese cOrpus foR Gender bIas Probing and Mitigation CORGI-PM, which contains 32.9k sentences with high-quality labels derived by following an annotation scheme specifically developed for gender bias in the Chinese context. Moreover, we address three challenges for automatic textual gender bias mitigation, which requires the models to detect, classify, and mitigate textual gender bias. We also conduct experiments with state-of-the-art language models to provide baselines. To our best knowledge, CORGI-PM is the first sentence-level Chinese corpus for gender bias probing and mitigation.
translated by 谷歌翻译
诸如学术文章和商业报告之类的长期文件一直是详细说明重要问题和需要额外关注的复杂主题的标准格式。自动汇总系统可以有效地将长文档置于简短而简洁的文本中,以封装最重要的信息,从而在帮助读者的理解中很重要。最近,随着神经体系结构的出现,已经做出了重大的研究工作,以推动自动文本摘要系统,以及有关将这些系统扩展到长期文档领域的挑战的大量研究。在这项调查中,我们提供了有关长期文档摘要的研究的全面概述,以及其研究环境的三个主要组成部分的系统评估:基准数据集,汇总模型和评估指标。对于每个组成部分,我们在长期汇总的背景下组织文献,并进行经验分析,以扩大有关当前研究进度的观点。实证分析包括一项研究基准数据集的内在特征,摘要模型的多维分析以及摘要评估指标的综述。根据总体发现,我们通过提出可能在这个快速增长的领域中提出未来探索的方向来得出结论。
translated by 谷歌翻译