3D convolutional neural networks have revealed superior performance in processing volumetric data such as video and medical imaging. However, the competitive performance by leveraging 3D networks results in huge computational costs, which are far beyond that of 2D networks. In this paper, we propose a novel Hilbert curve-based cross-dimensionality distillation approach that facilitates the knowledge of 3D networks to improve the performance of 2D networks. The proposed Hilbert Distillation (HD) method preserves the structural information via the Hilbert curve, which maps high-dimensional (>=2) representations to one-dimensional continuous space-filling curves. Since the distilled 2D networks are supervised by the curves converted from dimensionally heterogeneous 3D features, the 2D networks are given an informative view in terms of learning structural information embedded in well-trained high-dimensional representations. We further propose a Variable-length Hilbert Distillation (VHD) method to dynamically shorten the walking stride of the Hilbert curve in activation feature areas and lengthen the stride in context feature areas, forcing the 2D networks to pay more attention to learning from activation features. The proposed algorithm outperforms the current state-of-the-art distillation techniques adapted to cross-dimensionality distillation on two classification tasks. Moreover, the distilled 2D networks by the proposed method achieve competitive performance with the original 3D networks, indicating the lightweight distilled 2D networks could potentially be the substitution of cumbersome 3D networks in the real-world scenario.
translated by 谷歌翻译
深度学习的巨大成功主要是由于大规模的网络架构和高质量的培训数据。但是,在具有有限的内存和成像能力的便携式设备上部署最近的深层模型仍然挑战。一些现有的作品通过知识蒸馏进行了压缩模型。不幸的是,这些方法不能处理具有缩小图像质量的图像,例如低分辨率(LR)图像。为此,我们采取了开创性的努力,从高分辨率(HR)图像到达将处理LR图像的紧凑型网络模型中学习的繁重网络模型中蒸馏有用的知识,从而推动了新颖的像素蒸馏的当前知识蒸馏技术。为实现这一目标,我们提出了一名教师助理 - 学生(TAS)框架,将知识蒸馏分解为模型压缩阶段和高分辨率表示转移阶段。通过装备新颖的特点超分辨率(FSR)模块,我们的方法可以学习轻量级网络模型,可以实现与重型教师模型相似的准确性,但参数更少,推理速度和较低分辨率的输入。在三个广泛使用的基准,\即,幼崽200-2011,Pascal VOC 2007和ImageNetsub上的综合实验证明了我们方法的有效性。
translated by 谷歌翻译
One of the most efficient methods for model compression is hint distillation, where the student model is injected with information (hints) from several different layers of the teacher model. Although the selection of hint points can drastically alter the compression performance, conventional distillation approaches overlook this fact and use the same hint points as in the early studies. Therefore, we propose a clustering based hint selection methodology, where the layers of teacher model are clustered with respect to several metrics and the cluster centers are used as the hint points. Our method is applicable for any student network, once it is applied on a chosen teacher network. The proposed approach is validated in CIFAR-100 and ImageNet datasets, using various teacher-student pairs and numerous hint distillation methods. Our results show that hint points selected by our algorithm results in superior compression performance compared to state-of-the-art knowledge distillation algorithms on the same student models and datasets.
translated by 谷歌翻译
Electroencephalogram (EEG) has been one of the common neuromonitoring modalities for real-world brain-computer interfaces (BCIs) because of its non-invasiveness, low cost, and high temporal resolution. Recently, light-weight and portable EEG wearable devices based on low-density montages have increased the convenience and usability of BCI applications. However, loss of EEG decoding performance is often inevitable due to reduced number of electrodes and coverage of scalp regions of a low-density EEG montage. To address this issue, we introduce knowledge distillation (KD), a learning mechanism developed for transferring knowledge/information between neural network models, to enhance the performance of low-density EEG decoding. Our framework includes a newly proposed similarity-keeping (SK) teacher-student KD scheme that encourages a low-density EEG student model to acquire the inter-sample similarity as in a pre-trained teacher model trained on high-density EEG data. The experimental results validate that our SK-KD framework consistently improves motor-imagery EEG decoding accuracy when number of electrodes deceases for the input EEG data. For both common low-density headphone-like and headband-like montages, our method outperforms state-of-the-art KD methods across various EEG decoding model architectures. As the first KD scheme developed for enhancing EEG decoding, we foresee the proposed SK-KD framework to facilitate the practicality of low-density EEG-based BCI in real-world applications.
translated by 谷歌翻译
随着AI芯片(例如GPU,TPU和NPU)的改进以及物联网(IOT)的快速发展,一些强大的深神经网络(DNN)通常由数百万甚至数亿个参数组成,这些参数是可能不适合直接部署在低计算和低容量单元(例如边缘设备)上。最近,知识蒸馏(KD)被认为是模型压缩的有效方法之一,以减少模型参数。 KD的主要概念是从大型模型(即教师模型)的特征图中提取有用的信息,以引用成功训练一个小型模型(即学生模型),该模型大小比老师小得多。尽管已经提出了许多基于KD的方法来利用教师模型中中间层的特征图中的信息,但是,它们中的大多数并未考虑教师模型和学生模型之间的特征图的相似性,这可能让学生模型学习无用的信息。受到注意机制的启发,我们提出了一种新颖的KD方法,称为代表教师钥匙(RTK),该方法不仅考虑了特征地图的相似性,而且还会过滤掉无用的信息以提高目标学生模型的性能。在实验中,我们使用多个骨干网络(例如Resnet和wideresnet)和数据集(例如CIFAR10,CIFAR100,SVHN和CINIC10)验证了我们提出的方法。结果表明,我们提出的RTK可以有效地提高基于注意的KD方法的分类精度。
translated by 谷歌翻译
在线知识蒸馏会在所有学生模型之间进行知识转移,以减轻对预培训模型的依赖。但是,现有的在线方法在很大程度上依赖于预测分布并忽略了代表性知识的进一步探索。在本文中,我们提出了一种用于在线知识蒸馏的新颖的多尺度功能提取和融合方法(MFEF),其中包括三个关键组成部分:多尺度功能提取,双重注意和功能融合,以生成更有信息的特征图,以用于蒸馏。提出了在通道维度中的多尺度提取利用分界线和catenate,以提高特征图的多尺度表示能力。为了获得更准确的信息,我们设计了双重注意,以适应重要的渠道和空间区域。此外,我们通过功能融合来汇总并融合了以前的处理功能地图,以帮助培训学生模型。关于CIF AR-10,CIF AR-100和Cinic-10的广泛实验表明,MFEF转移了更有益的代表性知识,以蒸馏和胜过各种网络体系结构之间的替代方法
translated by 谷歌翻译
知识蒸馏(KD)在将学习表征从大型模型(教师)转移到小型模型(学生)方面表现出非常有希望的能力。但是,随着学生和教师之间的容量差距变得更大,现有的KD方法无法获得更好的结果。我们的工作表明,“先验知识”对KD至关重要,尤其是在应用大型老师时。特别是,我们提出了动态的先验知识(DPK),该知识将教师特征的一部分作为特征蒸馏之前的先验知识。这意味着我们的方法还将教师的功能视为“输入”,而不仅仅是``目标''。此外,我们根据特征差距动态调整训练阶段的先验知识比率,从而引导学生在适当的困难中。为了评估所提出的方法,我们对两个图像分类基准(即CIFAR100和Imagenet)和一个对象检测基准(即MS Coco)进行了广泛的实验。结果表明,在不同的设置下,我们方法在性能方面具有优势。更重要的是,我们的DPK使学生模型的表现与教师模型的表现呈正相关,这意味着我们可以通过应用更大的教师进一步提高学生的准确性。我们的代码将公开用于可重复性。
translated by 谷歌翻译
随着深度卷积神经网络的发展,近年来,医学图像分割取得了一系列突破。但是,高性能卷积神经网络总是意味着许多参数和高计算成本,这将阻碍在临床情况下的应用。同时,大规模注释的医学图像数据集的稀缺性进一步阻碍了高性能网络的应用。为了解决这些问题,我们提出了图形流,即一个全面的知识蒸馏框架,以用于网络效率和注释效率的医学图像分割。具体而言,我们的核心图流动蒸馏将跨层变化的本质从训练有素的繁琐教师网络转移到未经训练的紧凑型学生网络。此外,无监督的解释器模块被整合在一起以净化教师网络的知识,这也对训练程序的稳定也有益。此外,我们通过集成对抗性蒸馏和香草逻辑蒸馏来构建一个统一的蒸馏框架,这可以进一步完善紧凑网络的最终预测。通过不同的教师网络(常规的卷积架构或普遍的变压器体系结构)和学生网络,我们在四个具有不同模态的医学图像数据集(胃癌,Synapse,Busi和CVC-ClinicdB)上进行了广泛的实验。我们证明了我们的重要能力在这些数据集上实现竞争性能的方法。此外,我们证明了图形通过新型半监督范式进行双重有效医学图像分割的有效性。我们的代码将在图流量下可用。
translated by 谷歌翻译
大型预训练的变压器是现代语义分割基准的顶部,但具有高计算成本和冗长的培训。为了提高这种约束,我们从综合知识蒸馏的角度来研究有效的语义分割,并考虑弥合多源知识提取和特定于变压器特定的斑块嵌入之间的差距。我们提出了基于变压器的知识蒸馏(TransKD)框架,该框架通过蒸馏出大型教师变压器的特征地图和补丁嵌入来学习紧凑的学生变形金刚,绕过长期的预训练过程并将FLOPS降低> 85.0%。具体而言,我们提出了两个基本和两个优化模块:(1)交叉选择性融合(CSF)可以通过通道注意和层次变压器内的特征图蒸馏之间的知识转移; (2)嵌入对齐(PEA)在斑块过程中执行尺寸转换,以促进贴片嵌入蒸馏; (3)全局本地上下文混合器(GL-MIXER)提取了代表性嵌入的全局和局部信息; (4)嵌入助手(EA)是一种嵌入方法,可以无缝地桥接老师和学生模型,并具有老师的渠道数量。关于CityScapes,ACDC和NYUV2数据集的实验表明,TransKD的表现优于最先进的蒸馏框架,并竞争了耗时的预训练方法。代码可在https://github.com/ruipingl/transkd上找到。
translated by 谷歌翻译
由于学术和工业领域的异质图无处不在,研究人员最近提出了许多异质图神经网络(HGNN)。在本文中,我们不再采用更强大的HGNN模型,而是有兴趣设计一个多功能的插件模块,该模块解释了从预先训练的HGNN中提取的关系知识。据我们所知,我们是第一个在异质图上提出高阶(雇用)知识蒸馏框架的人,无论HGNN的模型体系结构如何,它都可以显着提高预测性能。具体而言,我们的雇用框架最初执行一阶节点级知识蒸馏,该蒸馏曲线及其预测逻辑编码了老师HGNN的语义。同时,二阶关系级知识蒸馏模仿了教师HGNN生成的不同类型的节点嵌入之间的关系相关性。在各种流行的HGNN模型和三个现实世界的异质图上进行了广泛的实验表明,我们的方法获得了一致且相当大的性能增强,证明了其有效性和泛化能力。
translated by 谷歌翻译
知识蒸馏在模型压缩方面取得了显着的成就。但是,大多数现有方法需要原始的培训数据,而实践中的实际数据通常是不可用的,因为隐私,安全性和传输限制。为了解决这个问题,我们提出了一种有条件的生成数据无数据知识蒸馏(CGDD)框架,用于培训有效的便携式网络,而无需任何实际数据。在此框架中,除了使用教师模型中提取的知识外,我们将预设标签作为额外的辅助信息介绍以培训发电机。然后,训练有素的发生器可以根据需要产生指定类别的有意义的培训样本。为了促进蒸馏过程,除了使用常规蒸馏损失,我们将预设标签视为地面真理标签,以便学生网络直接由合成训练样本类别监督。此外,我们强制学生网络模仿教师模型的注意图,进一步提高了其性能。为了验证我们方法的优越性,我们设计一个新的评估度量称为相对准确性,可以直接比较不同蒸馏方法的有效性。培训的便携式网络通过提出的数据无数据蒸馏方法获得了99.63%,99.07%和99.84%的CIFAR10,CIFAR100和CALTECH101的相对准确性。实验结果表明了所提出的方法的优越性。
translated by 谷歌翻译
知识蒸馏(KD)将知识从高容量的教师网络转移到加强较小的学生。现有方法着重于发掘知识的提示,并将整个知识转移给学生。但是,由于知识在不同的学习阶段显示出对学生的价值观,因此出现了知识冗余。在本文中,我们提出了知识冷凝蒸馏(KCD)。具体而言,每个样本上的知识价值是动态估计的,基于期望最大化(EM)框架的迭代性凝结,从老师那里划定了一个紧凑的知识,以指导学生学习。我们的方法很容易建立在现成的KD方法之上,没有额外的培训参数和可忽略不计的计算开销。因此,它为KD提出了一种新的观点,在该观点中,积极地识别教师知识的学生可以学会更有效,有效地学习。对标准基准测试的实验表明,提出的KCD可以很好地提高学生模型的性能,甚至更高的蒸馏效率。代码可在https://github.com/dzy3/kcd上找到。
translated by 谷歌翻译
近年来,深度卷积神经网络在病理学图像分割方面取得了重大进展。然而,病理图像分割遇到困境,其中更高绩效网络通常需要更多的计算资源和存储。由于病理图像的固有高分辨率,这种现象限制了实际场景中的高精度网络的就业。为了解决这个问题,我们提出了一种用于病理胃癌细分的新型跨层相关(COCO)知识蒸馏网络。知识蒸馏,通过从繁琐的网络从知识转移提高紧凑型网络的性能的一般技术。具体而言,我们的Coco Distillnet模拟了不同层之间的通道混合空间相似性的相关性,然后将这些知识从预培训的繁琐的教师网络传送到非培训的紧凑学生网络。此外,我们还利用了对抗性学习策略来进一步提示被称为对抗性蒸馏(AD)的蒸馏程序。此外,为了稳定我们的培训程序,我们利用无监督的释义模块(PM)来提高教师网络中的知识释义。结果,对胃癌细分数据集进行的广泛实验表明了Coco Distillnet的突出能力,实现了最先进的性能。
translated by 谷歌翻译
作为模型压缩的一种有前途的方法,知识蒸馏通过从繁琐的知识转移知识来改善紧凑模型的性能。用于指导学生培训的知识很重要。语义分割中的先前蒸馏方法努力从这些特征中提取各种形式的知识,涉及依靠先前信息并具有有限的性能提高的精心手动设计。在本文中,我们提出了一种称为标准化功能蒸馏(NFD)的简单而有效的特征蒸馏方法,旨在实现原始功能的有效蒸馏,而无需手动设计新的知识形式。关键的想法是防止学生专注于模仿通过归一化的教师特征响应的幅度。我们的方法可获得有关CityScapes,VOC 2012和ADE20K数据集的语义细分的最新蒸馏结果。代码将可用。
translated by 谷歌翻译
Considering the computation complexity, we propose a Guided Hybrid Quantization with One-to-one Self-Teaching (GHOST}) framework. More concretely, we first design a structure called guided quantization self-distillation (GQSD), which is an innovative idea for realizing lightweight through the synergy of quantization and distillation. The training process of the quantization model is guided by its full-precision model, which is time-saving and cost-saving without preparing a huge pre-trained model in advance. Second, we put forward a hybrid quantization (HQ) module to obtain the optimal bit width automatically under a constrained condition where a threshold for distribution distance between the center and samples is applied in the weight value search space. Third, in order to improve information transformation, we propose a one-to-one self-teaching (OST) module to give the student network a ability of self-judgment. A switch control machine (SCM) builds a bridge between the student network and teacher network in the same location to help the teacher to reduce wrong guidance and impart vital knowledge to the student. This distillation method allows a model to learn from itself and gain substantial improvement without any additional supervision. Extensive experiments on a multimodal dataset (VEDAI) and single-modality datasets (DOTA, NWPU, and DIOR) show that object detection based on GHOST outperforms the existing detectors. The tiny parameters (<9.7 MB) and Bit-Operations (BOPs) (<2158 G) compared with any remote sensing-based, lightweight or distillation-based algorithms demonstrate the superiority in the lightweight design domain. Our code and model will be released at https://github.com/icey-zhang/GHOST.
translated by 谷歌翻译
知识蒸馏(KD)是一个有效的框架,旨在将有意义的信息从大型老师转移到较小的学生。通常,KD通常涉及如何定义和转移知识。以前的KD方法通常着重于挖掘各种形式的知识,例如功能地图和精致信息。但是,知识源自主要监督任务,因此是高度特定于任务的。在自我监督的代表学习的最新成功中,我们提出了一项辅助自我实施的增强任务,以指导网络学习更多有意义的功能。因此,我们可以从KD的这项任务中得出软性自我实施的增强分布作为更丰富的黑暗知识。与以前的知识不同,此分布编码从监督和自我监督的特征学习中编码联合知识。除了知识探索之外,我们建议在各个隐藏层上附加几个辅助分支,以充分利用分层特征图。每个辅助分支都被指导学习自学的增强任务,并将这种分布从教师到学生提炼。总体而言,我们称我们的KD方法为等级自我实施的增强知识蒸馏(HSSAKD)。标准图像分类的实验表明,离线和在线HSSAKD都在KD领域达到了最先进的表现。对象检测的进一步转移实验进一步验证了HSSAKD可以指导网络学习更好的功能。该代码可在https://github.com/winycg/hsakd上找到。
translated by 谷歌翻译
知识蒸馏已成为获得紧凑又有效模型的重要方法。为实现这一目标,培训小型学生模型以利用大型训练有素的教师模型的知识。然而,由于教师和学生之间的能力差距,学生的表现很难达到老师的水平。关于这个问题,现有方法建议通过代理方式减少教师知识的难度。我们认为这些基于代理的方法忽视了教师的知识损失,这可能导致学生遇到容量瓶颈。在本文中,我们从新的角度来缓解能力差距问题,以避免知识损失的目的。我们建议通过对抗性协作学习建立一个更有力的学生,而不是牺牲教师的知识。为此,我们进一步提出了一种逆势协作知识蒸馏(ACKD)方法,有效提高了知识蒸馏的性能。具体来说,我们用多个辅助学习者构建学生模型。同时,我们设计了对抗的对抗性协作模块(ACM),引入注意机制和对抗的学习,以提高学生的能力。四个分类任务的广泛实验显示了拟议的Ackd的优越性。
translated by 谷歌翻译
在这项工作中,我们提出了相互信息最大化知识蒸馏(MIMKD)。我们的方法使用对比目标来同时估计,并最大化教师和学生网络之间的本地和全球特征表示的相互信息的下限。我们通过广泛的实验证明,这可以通过将知识从更加性能但计算昂贵的模型转移来改善低容量模型的性能。这可用于产生更好的模型,可以在具有低计算资源的设备上运行。我们的方法灵活,我们可以将具有任意网络架构的教师蒸馏到任意学生网络。我们的经验结果表明,MIMKD优于各种学生教师对的竞争方法,具有不同的架构,以及学生网络的容量极低。我们能够通过从Reset-50蒸馏出来的知识,从基线精度为Shufflenetv2获得74.55%的精度。在Imagenet上,我们使用Reset-34教师网络将Reset-18网络从68.88%提高到70.32%的准确度(1.44%+)。
translated by 谷歌翻译
有效的医疗图像细分旨在通过轻量级实施框架为医学图像提供准确的像素预测。然而,轻量级框架通常无法实现高性能,并且遭受了跨域任务的可概括能力。在本文中,我们提出了一种可推广的知识蒸馏方法,用于良好,有效地分割跨域医学图像。主要是,我们提出了模型特异性的对准网络(MSAN),以提供由预训练的语义自动编码器(P-SAE)正规化的域不变表示。同时,定制的一致性培训(ACT)策略旨在促进MSAN培训。在MSAN中的域不变代表矢量中,我们提出了两个可推广的知识蒸馏方案,双对比度图蒸馏(DCGD)和域不变的交叉蒸馏(DICD)。具体而言,在DCGD中,设计了两种类型的隐式对比图,以从数据分布的角度来表示耦合和耦合语义相关性。在DICD中,来自MSAN的标题交换将两个模型(即教师和学生)的域语义向量(即教师和学生)借给了跨重建功能,这可以在学生模型中实现编码器和解码器的可推广改进。此外,定制了一个名为FR \'Echet语义距离(FSD)的度量,以验证正则化域不变特征的有效性。在肝和视网膜血管分割数据集上进行的广泛实验证明了我们方法的优先级,就轻量级框架的性能和概括而言。
translated by 谷歌翻译
基于可穿戴传感器的人类动作识别(HAR)最近取得了杰出的成功。但是,基于可穿戴传感器的HAR的准确性仍然远远落后于基于视觉模式的系统(即RGB视频,骨架和深度)。多样化的输入方式可以提供互补的提示,从而提高HAR的准确性,但是如何利用基于可穿戴传感器的HAR的多模式数据的优势很少探索。当前,可穿戴设备(即智能手表)只能捕获有限的非视态模式数据。这阻碍了多模式HAR关联,因为它无法同时使用视觉和非视态模态数据。另一个主要挑战在于如何在有限的计算资源上有效地利用可穿戴设备上的多模式数据。在这项工作中,我们提出了一种新型的渐进骨骼到传感器知识蒸馏(PSKD)模型,该模型仅利用时间序列数据,即加速度计数据,从智能手表来解决基于可穿戴传感器的HAR问题。具体而言,我们使用来自教师(人类骨架序列)和学生(时间序列加速度计数据)模式的数据构建多个教师模型。此外,我们提出了一种有效的渐进学习计划,以消除教师和学生模型之间的绩效差距。我们还设计了一种称为自适应信心语义(ACS)的新型损失功能,以使学生模型可以自适应地选择其中一种教师模型或所需模拟的地面真实标签。为了证明我们提出的PSKD方法的有效性,我们对伯克利-MHAD,UTD-MHAD和MMACT数据集进行了广泛的实验。结果证实,与以前的基于单传感器的HAR方法相比,提出的PSKD方法具有竞争性能。
translated by 谷歌翻译