对机器人在现实世界中的准确控制需要一个控制系统,该控制系统能够考虑机器人与环境的动力学相互作用。在高速度下,机器人对这些运动动力学相互作用的运动依赖性变得更加明显,使高速,准确的机器人控制一个具有挑战性的问题。先前的工作表明,学习机器人的逆动力动力学(IKD)可能有助于高速机器人控制。但是,学习的逆运动动力学模型只能应用于有限的控制问题类别,不同的控制问题需要学习新的IKD模型。在这项工作中,我们提出了一种新的公式,用于精确,高速机器人控制,该配方利用了学习的前进运动动力学(FKD)模型和非线性最小二乘优化。从公式的本质上讲,这种方法可以扩展到各种各样的控制问题,而无需重新培训新模型。我们证明了这种方法在高速上准确控制刻度的十分之一机器人车的能力,并显示出比基线相比的结果。
translated by 谷歌翻译
高速偏离地面车辆的高速偏离道路导航的主要挑战之一是,车辆地形相互作用的动力动力学会根据地形而大不相同。以前解决这一挑战的方法已经考虑学习一种基于车辆的惯性信息,以感知运动动力学相互作用。在本文中,我们假设,除了过去的惯性信息外,还必须预料到将来,还必须预料到将来,还必须预料到将来,还必须预料到将来,还必须预料到将来,还必须预料到将来的动力学相互作用,以实现精确的高速越野导航。为此,我们引入了视觉惯性逆动力动力学(VI-IKD),这是一种新型的基于学习的IKD模型,除了过去的惯性信息外,还基于从机器人前面的地形贴片的视觉信息进行条件,使其能够预期会素动力学相互作用在将来。我们在室内和室外环境中验证了VI-IKD在实验上进行实验性高速越野导航的有效性ART方法,VI-IKD可以以高达3.5 m/s的速度在各种不同的地形上更准确,更强大的越野导航。
translated by 谷歌翻译
基于采样的运动计划者,例如RRT*和BIT*,当应用于运动动力运动计划时,依靠转向功能来生成连接采样状态的时间优势解决方案。实施精确的转向功能需要针对时间最佳控制问题的分析解决方案,或者非线性编程(NLP)求解器以鉴于系统的动力学方程式解决边界值问题。不幸的是,对于许多实际域而言,分析解决方案不可用,而NLP求解器在计算上非常昂贵,因此快速且最佳的动力动力运动计划仍然是一个开放的问题。我们通过引入状态监督转向功能(S3F)来提供解决此问题的解决方案,这是一种学习时间优势转向功能的新方法。 S3F能够比其NLP对应物更快地为转向函数的数量级产生近乎最佳的解决方案。在三个具有挑战性的机器人域进行的实验表明,使用S3F的RRT*在解决方案成本和运行时都显着优于最先进的计划方法。我们进一步提供了RRT*修改以使用S3F的概率完整性的证明。
translated by 谷歌翻译
当机器人在具有非结构化地形的现实世界越野环境中运行时,适应其导航政策的能力对于有效且安全的导航至关重要。但是,越野地形为机器人导航带来了一些挑战,包括动态障碍和地形不确定性,导致遍历或导航故障效率低下。为了应对这些挑战,我们通过谈判引入了一种新颖的适应方法,使地面机器人能够通过谈判过程来调整其导航行为。我们的方法首先学习了各种导航政策的预测模型,以充当地形感知的本地控制器和计划者。然后,通过新的谈判过程,我们的方法从与环境的各种政策互动中学习,以在线方式达成最佳政策组合,以使机器人导航适应即时的非结构性越野地形。此外,我们实施了一种新的优化算法,该算法为执行过程中实时实时提供机器人谈判提供了最佳解决方案。实验结果已经验证了我们通过谈判的适应方法优于机器人导航的先前方法,尤其是在看不见和不确定的动态地形上。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
在腿部机器人技术中,计划和执行敏捷的机动演习一直是一个长期的挑战。它需要实时得出运动计划和本地反馈政策,以处理动力学动量的非物质。为此,我们提出了一个混合预测控制器,该控制器考虑了机器人的致动界限和全身动力学。它将反馈政策与触觉信息相结合,以在本地预测未来的行动。由于采用可行性驱动的方法,它在几毫秒内收敛。我们的预测控制器使Anymal机器人能够在现实的场景中生成敏捷操作。关键要素是跟踪本地反馈策略,因为与全身控制相反,它们达到了所需的角动量。据我们所知,我们的预测控制器是第一个处理驱动限制,生成敏捷的机动操作以及执行低级扭矩控制的最佳反馈策略,而无需使用单独的全身控制器。
translated by 谷歌翻译
本文旨在提高用于车辆系统的Kinodynamic规划师的路径质量和计算效率。它提出了一个学习框架,用于在具有动态的系统的基于采样的运动规划仪的扩展过程中识别有前途的控制。离线,学习过程训练,以返回最高质量控制,以便在没有来自其当前状态和局部目标状态之间的输入差异矢量的障碍物的情况下达到局部目标状态(即航点)。数据生成方案在目标色散上提供界限,并使用状态空间修剪以确保高质量控制。通过专注于系统的动态,该过程是数据高效并发生一次动态系统,使其可用于具有模块化扩展功能的不同环境。这项工作与a)将所提出的学习过程集成了一个)探索性扩展功能,该探索性扩展函数在可到达空间上生成有偏见的覆盖范围,B)为移动机器人提出了一种利用的扩展功能,其使用内侧轴信息生成航点。本文评估了第一和二阶差分驱动系统的学习过程和相应的规划仪。结果表明,拟议的学习和规划的整合可以产生比Kinodynamic规划更好的质量路径,随机控制在较少的迭代和计算时间。
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
近年来,轨迹优化方法已在现实世界机器人上达到了出色的性能水平。这些方法在很大程度上依赖于动力学的准确分析模型,但是物理世界的某些方面只能在有限的程度上捕获。另一种方法是利用机器学习技术从数据中学习系统的可区分动力学模型。在这项工作中,我们使用轨迹优化和模型学习,在没有精确的动力学分析模型的情况下,使用机器人系统执行高度动态和复杂的任务。我们表明,从仅在两个不同的机器人上的25分钟相互作用的数据中收集的数据,神经网络可以准确地对高度非线性行为进行建模:(i)波士顿动力学点和(ii)RC CAR。此外,我们使用神经网络的梯度来执行基于梯度的轨迹优化。在我们的硬件实验中,我们证明了我们所学的模型可以代表现场和无线电控制(RC)汽车的复杂动力学,并与轨迹优化方法结合使用良好的性能。
translated by 谷歌翻译
我们向连续状态马尔可夫决策过程(MDP)提出了一种扩散近似方法,该方法可用于解决非结构化的越野环境中的自主导航和控制。与呈现完全已知的状态转换模型的大多数决策定理计划框架相比,我们设计了一种方法,该方法消除了这种强烈假设,这些假设通常非常难以在现实中工程师。我们首先采用价值函数的二阶泰勒扩展。然后通过部分微分方程近似贝尔曼的最优性方程,其仅依赖于转换模型的第一和第二矩。通过组合价值函数的内核表示,然后设计一种有效的策略迭代算法,其策略评估步骤可以表示为特征的方程式的线性系统,其特征是由有限组支持状态。我们首先通过大量的仿真以2D美元的$ 2D $避让和2.5d $地形导航问题进行验证。结果表明,拟议的方法在几个基线上导致了卓越的性能。然后,我们开发一个系统,该系统将我们的决策框架整合,与船上感知,并在杂乱的室内和非结构化的户外环境中进行现实世界的实验。物理系统的结果进一步展示了我们在挑战现实世界环境中的方法的适用性。
translated by 谷歌翻译
策略搜索和模型预测控制〜(MPC)是机器人控制的两个不同范式:策略搜索具有使用经验丰富的数据自动学习复杂策略的强度,而MPC可以使用模型和轨迹优化提供最佳控制性能。开放的研究问题是如何利用并结合两种方法的优势。在这项工作中,我们通过使用策略搜索自动选择MPC的高级决策变量提供答案,这导致了一种新的策略搜索 - 用于模型预测控制框架。具体地,我们将MPC作为参数化控制器配制,其中难以优化的决策变量表示为高级策略。这种制定允许以自我监督的方式优化政策。我们通过专注于敏捷无人机飞行中的具有挑战性的问题来验证这一框架:通过快速的盖茨飞行四轮车。实验表明,我们的控制器在模拟和现实世界中实现了鲁棒和实时的控制性能。拟议的框架提供了合并学习和控制的新视角。
translated by 谷歌翻译
灵活的联合机械手经常用于人机协作和共享工作区任务的增强安全性。然而,关节灵活性显着降低了运动的准确性,特别是在高速度和廉价的致动器中。在本文中,我们提出了一种基于学习的方法来识别柔性联合机械手的未知动态,并改善高速下的轨迹跟踪。我们提出了一种两级模型,由一步向前动态预测器和逆动力学估计器组成。第二部分基于线性时间不变动态运算符,以近似前馈接头位置和速度命令。我们在真实数据上培训模型结束,并在Baxter Robot上评估它。我们的实验表明,通过一步的未来状态预测增强输入可以提高性能,而不是在没有预测的情况下相同的模型。我们比较关节位置,接合速度和终端效应器位置跟踪精度,对经典基线控制器和几种更简单的型号。
translated by 谷歌翻译
机器人导航传统上依赖于构建用于计划无碰撞轨迹的显式映射到所需的目标。在可变形的复杂地形中,使用基于几何的方法可以不能找到由于错误的可变形物体而像刚性和不可能的那样的路径。相反,我们学习预测地形区域的可迁移性以及更喜欢更容易导航的区域的估计(例如,小草上的小灌木)。与规范动态模型相比,我们而不是预测碰撞,而不是在实现的错误上回归。我们用一个政策方法训练,导致使用跨模拟和现实世界的培训数据分裂的50分钟的成功导航政策。我们基于学习的导航系统是一个示例高效的短期计划,我们在通过包括草原和森林的各种地形导航的清晰路径哈士摩克
translated by 谷歌翻译
在本文中,我们为全向机器人提供了一种积极的视觉血液。目标是生成允许这样的机器人同时定向机器人的控制命令并将未知环境映射到最大化的信息量和消耗尽可能低的信息。利用机器人的独立翻译和旋转控制,我们引入了一种用于活动V-SLAM的多层方法。顶层决定提供信息丰富的目标位置,并为它们产生高度信息的路径。第二个和第三层积极地重新计划并执行路径,利用连续更新的地图和本地特征信息。此外,我们介绍了两个实用程序配方,以解释视野和机器人位置的障碍物。通过严格的模拟,真正的机器人实验和与最先进的方法的比较,我们证明我们的方法通过较小的整体地图熵实现了类似的覆盖结果。这是可以获得的,同时保持横向距离比其他方法短至39%,而不增加车轮的总旋转量。代码和实现详细信息作为开源提供。
translated by 谷歌翻译
我们提出了一种自我监督的方法,用于预测需要良好牵引力才能导航的轮式移动机器人的可穿越路径。我们的算法称为Wayfast(无路线自动驾驶系统用于遍历性),使用RGB和深度数据以及导航经验,自主在室外非结构化环境中自主生成可遍历的路径。我们的主要灵感是,可以使用动力动力学模型估算滚动机器人的牵引力。使用在线退化的视野估计器提供的牵引力估计值,我们能够以自我监督的方式训练遍历性预测神经网络,而无需以前的方法使用的启发式方法。我们通过在各种环境中进行广泛的现场测试来证明Wayfast的有效性,从沙滩到森林檐篷和积雪覆盖的草田不等。我们的结果清楚地表明,Wayfast可以学会避免几何障碍物以及不可传输的地形,例如雪,这很难避免使用仅提供几何数据(例如LiDAR)的传感器。此外,我们表明,基于在线牵引力估计的培训管道比其他基于启发式的方法更有效率。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
Practical operations of coordinated fleets of mobile robots in different environments reveal benefits of maintaining small distances between robots as they move at higher speeds. This is counter-intuitive in that as speed increases, increased distances would give robots a larger time to respond to sudden motion variations in surrounding robots. However, there is a desire to have lower inter-robot distances in examples like autonomous trucks on highways to optimize energy by vehicle drafting or smaller robots in cluttered environments to maintain communication, etc. This work introduces a model based control framework that directly takes non-linear system dynamics into account. Each robot is able to follow closer at high speeds because it makes predictions on the state information from its adjacent robots and biases it's response by anticipating adjacent robots' motion. In contrast to existing controllers, our non-linear model based predictive decentralized controller is able to achieve lower inter-robot distances at higher speeds. We demonstrate the success of our approach through simulated and hardware results on mobile ground robots.
translated by 谷歌翻译
Sampling-based methods have become a cornerstone of contemporary approaches to Model Predictive Control (MPC), as they make no restrictions on the differentiability of the dynamics or cost function and are straightforward to parallelize. However, their efficacy is highly dependent on the quality of the sampling distribution itself, which is often assumed to be simple, like a Gaussian. This restriction can result in samples which are far from optimal, leading to poor performance. Recent work has explored improving the performance of MPC by sampling in a learned latent space of controls. However, these methods ultimately perform all MPC parameter updates and warm-starting between time steps in the control space. This requires us to rely on a number of heuristics for generating samples and updating the distribution and may lead to sub-optimal performance. Instead, we propose to carry out all operations in the latent space, allowing us to take full advantage of the learned distribution. Specifically, we frame the learning problem as bi-level optimization and show how to train the controller with backpropagation-through-time. By using a normalizing flow parameterization of the distribution, we can leverage its tractable density to avoid requiring differentiability of the dynamics and cost function. Finally, we evaluate the proposed approach on simulated robotics tasks and demonstrate its ability to surpass the performance of prior methods and scale better with a reduced number of samples.
translated by 谷歌翻译
谷仓(基准自动驾驶机器人导航)挑战在宾夕法尼亚州费城的2022年IEEE国际机器人和自动化国际会议(ICRA 2022)举行。挑战的目的是评估最先进的自动地面导航系统,以安全有效的方式将机器人通过高度约束的环境移动。具体而言,任务是将标准化的差分驱动地面机器人从预定义的开始位置导航到目标位置,而不会与模拟和现实世界中的任何障碍相撞。来自世界各地的五支球队参加了合格的模拟比赛,其中三支受邀在费城会议中心的一组身体障碍课程中相互竞争。竞争结果表明,尽管表面上显得简单,即使对于经验丰富的机器人主义者来说,在高度约束空间中的自主地面导航实际上远非解决问题。在本文中,我们讨论了挑战,前三名获胜团队所使用的方法以及学到的教训以指导未来的研究。
translated by 谷歌翻译