实体对齐(EA)的目的是匹配引用相同现实世界对象的等效实体,并且是知识图(kg)融合的关键步骤。大多数神经EA模型由于其过度消耗GPU记忆和时间而无法应用于大型现实生活中。一种有希望的解决方案是将大型EA任务分为几个子任务,以便每个子任务只需要匹配原始kg的两个小子图。但是,在不失去效力的情况下分配EA任务是一个挑战。现有方法显示了潜在映射的覆盖范围较低,上下文图中的证据不足以及子任务的大小不同。在这项工作中,我们设计了具有高质量任务部门的大规模EA的分区框架。为了在EA子任务中包括最初存在于大型EA任务中的潜在映射的很大比例,我们设计了一种对应的发现方法,该方法利用了EA任务的局部原理和训练有素的EA模型的力量。我们的对手发现方法独有的是潜在映射的机会的明确建模。我们还介绍了传递机制的证据,以量化上下文实体的信息性,并找到对子任务大小的灵活控制的最有用的上下文图。广泛的实验表明,与替代性的最先进的解决方案相比,分区的EA性能更高。
translated by 谷歌翻译
Entity Alignment (EA), which aims to detect entity mappings (i.e. equivalent entity pairs) in different Knowledge Graphs (KGs), is critical for KG fusion. Neural EA methods dominate current EA research but still suffer from their reliance on labelled mappings. To solve this problem, a few works have explored boosting the training of EA models with self-training, which adds confidently predicted mappings into the training data iteratively. Though the effectiveness of self-training can be glimpsed in some specific settings, we still have very limited knowledge about it. One reason is the existing works concentrate on devising EA models and only treat self-training as an auxiliary tool. To fill this knowledge gap, we change the perspective to self-training to shed light on it. In addition, the existing self-training strategies have limited impact because they introduce either much False Positive noise or a low quantity of True Positive pseudo mappings. To improve self-training for EA, we propose exploiting the dependencies between entities, a particularity of EA, to suppress the noise without hurting the recall of True Positive mappings. Through extensive experiments, we show that the introduction of dependency makes the self-training strategy for EA reach a new level. The value of self-training in alleviating the reliance on annotation is actually much higher than what has been realised. Furthermore, we suggest future study on smart data annotation to break the ceiling of EA performance.
translated by 谷歌翻译
Entity Alignment (EA) aims to find equivalent entities between two Knowledge Graphs (KGs). While numerous neural EA models have been devised, they are mainly learned using labelled data only. In this work, we argue that different entities within one KG should have compatible counterparts in the other KG due to the potential dependencies among the entities. Making compatible predictions thus should be one of the goals of training an EA model along with fitting the labelled data: this aspect however is neglected in current methods. To power neural EA models with compatibility, we devise a training framework by addressing three problems: (1) how to measure the compatibility of an EA model; (2) how to inject the property of being compatible into an EA model; (3) how to optimise parameters of the compatibility model. Extensive experiments on widely-used datasets demonstrate the advantages of integrating compatibility within EA models. In fact, state-of-the-art neural EA models trained within our framework using just 5\% of the labelled data can achieve comparable effectiveness with supervised training using 20\% of the labelled data.
translated by 谷歌翻译
实体对齐是知识图融合中的至关重要任务。但是,大多数实体对准方法都有可伸缩性问题。最近的方法通过将大型公斤分成小块来解决这个问题,以嵌入和对齐学习。但是,这种分区和学习过程导致结构和对齐过度损失过多。因此,在这项工作中,我们提出了一种可扩展的基于GNN的实体对准方法,以从三个角度降低结构和对齐损失。首先,我们提出一种基于中心性的子图生成算法,以回顾一些具有不同子图之间桥梁的地标实体。其次,我们介绍了自我监督的实体重建,以从不完整的邻里子图中恢复实体表示形式,并设计了跨纸笔负面抽样,以在对齐学习中纳入其他子图中的实体。第三,在推理过程中,我们合并子图的嵌入,以制作一个单个空间进行对齐搜索。基准开放数据集和提议的大型DBPEDIA1M数据集的实验结果验证了我们方法的有效性。
translated by 谷歌翻译
实体对齐是知识图(kg)集成中的基本且至关重要的技术。多年来,对实体一致性的研究一直存在于KG是静态的假设,该假设忽略了现实世界KG的生长本质。随着KG的成长,先前的一致性结果面临需要重新审视的,而新实体对齐等待被发现。在本文中,我们建议并深入研究现实但未开发的设置,称为持续实体对齐。为了避免在新实体和三元组来时对整个KGS进行整个模型,我们为此任务提供了一种持续的对齐方法。它基于实体邻接,重建实体的表示,使其能够使用其现有邻居快速而有归纳的新实体生成嵌入。它选择并重播部分预先对准的实体对,仅训练一部分KG,同时提取可信赖的知识对准知识增强。由于不可避免地要包含与以前的作品不同的不可匹配的实体,因此所提出的方法采用双向最近的邻居匹配来找到新的实体对齐并更新旧的对齐。此外,我们还通过模拟多语言dbpedia的增长来构建新数据集。广泛的实验表明,我们的持续比对方法比基于再培训或归纳学习的基准更有效。
translated by 谷歌翻译
知识图(kg)对齐 - 指识别不同kgs中同一件事的实体的任务 - 被认为是KG构造领域中最重要的操作之一。然而,现有的对齐技术通常假设输入kgs是完整的并且同性的,这是由于域,大小和稀疏性的现实世界异质性而不是真实。在这项工作中,我们解决了与代表学习对齐不完整的KG对齐的问题。我们的KG嵌入式框架利用了两个特征频道:基于传输型和基于接近的。前者通过翻译路径捕获实体之间的一致性约束,而后者通过注意引导关系感知图形神经网络捕获KG的邻域结构。两个特征频道共同学习以在输入kgs之间交换重要特征,同时强制在同一嵌入空间中强制输入kg的输出表示。此外,我们开发了缺失的链接检测器,该探测器发现并恢复培训过程中输入kgs中的缺失链接,这有助于减轻不完整性问题,从而提高学习象征的兼容性。然后将嵌入的熔合融合以生成对准结果,并且高置信匹配节点对被更新为预先调整的监控数据以逐渐改善嵌入。经验结果表明,我们的型号比SOTA更准确,而且对不同级别的不完整性较高,高达15.2 \%。我们还证明了KGS之间交换的知识有助于揭示知识图表(A.K.A.知识完成)的看不见的事实,结果比SOTA知识图形完成技术高3.5 \%。
translated by 谷歌翻译
实体对齐是将知识图(KGS)与多个源集成的重要步骤。以前的实体对齐尝试已经探索了不同的kg结构,例如基于邻域和基于路径的上下文,以学习实体嵌入物,但它们受到捕获多上下文特征的限制。此外,大多数方法直接利用嵌入相似性以确定实体对齐,而不考虑实体和关系之间的全局互动。在这项工作中,我们提出了一个明智的多上下文实体对齐(IMEA)模型来解决这些问题。特别是,我们引入变压器以灵活地捕获关系,路径和邻域背景,并根据嵌入相似度和关系/实体功能设计整体推理以估计对齐概率。从整体推理获得的对准证据通过所提出的软标签编辑进一步注入变压器,以通知嵌入学习。与现有的最先进的实体对准方法相比,若干基准数据集上的实验结果证明了IMEA模型的优越性。
translated by 谷歌翻译
实体对齐旨在发现在不同知识图(kg)之间具有相同含义的独特等效实体对。对于知识整合或融合,这是一项令人信服但具有挑战性的任务。现有模型主要集中于将KGS投射到潜在的嵌入空间中,以捕获实体对齐实体之间的固有语义。但是,一致性冲突的不利影响在训练过程中被大大忽略了,从而限制了实体对准绩效。为了解决这个问题,我们提出了一种新颖的冲突感知伪标签,该标签通过最佳运输模型(CPL-OT)进行实体对齐。 CPL-OT的关键思想是迭代的伪标签对齐对,并通过冲突意识到的最佳运输建模授权,以提高实体对齐的精度。 CPL-OT由两个关键组成部分 - 实体嵌入学习,其中包括全球本地聚集和迭代冲突感知的伪标签 - 相互互相加强。为了减轻伪标签期间的一致性冲突,我们建议使用最佳运输(OT)作为有效手段,以保证两公斤之间的一对一实体对齐,而总体运输成本最少。运输成本被计算为通过图形卷积获得的实体嵌入之间的整流距离,并用全球级别的语义增强。基准数据集的广泛实验表明,在有或没有先前对齐种子的两个设置下,CPL-OT可以显着超过最先进的基准。
translated by 谷歌翻译
本文介绍了$ \ mu \ text {kg} $,一个开源python库,用于在知识图上进行表示。 $ \ mu \ text {kg} $支持通过多源知识图(以及单个知识图),多个深度学习库(Pytorch和Tensorflow2),多个嵌入任务(链接预​​测,实体对准,实体键入,实体键入),支持联合表示。 ,以及多源链接预测)以及多个并行计算模式(多进程和多GPU计算)。它目前实现26个流行知识图嵌入模型,并支持16个基准数据集。 $ \ mu \ text {kg} $提供了具有不同任务的简化管道的嵌入技术的高级实现。它还带有高质量的文档,以易于使用。 $ \ mu \ text {kg} $比现有的知识图嵌入库更全面。它对于对各种嵌入模型和任务进行彻底比较和分析非常有用。我们表明,共同学习的嵌入可以极大地帮助知识驱动的下游任务,例如多跳知识图形答案。我们将与相关字段中的最新发展保持一致,并将其纳入$ \ mu \ text {kg} $中。
translated by 谷歌翻译
Entity alignment is to find identical entities in different knowledge graphs (KGs) that refer to the same real-world object. Embedding-based entity alignment techniques have been drawing a lot of attention recently because they can help solve the issue of symbolic heterogeneity in different KGs. However, in this paper, we show that the progress made in the past was due to biased and unchallenging evaluation. We highlight two major flaws in existing datasets that favor embedding-based entity alignment techniques, i.e., the isomorphic graph structures in relation triples and the weak heterogeneity in attribute triples. Towards a critical evaluation of embedding-based entity alignment methods, we construct a new dataset with heterogeneous relations and attributes based on event-centric KGs. We conduct extensive experiments to evaluate existing popular methods, and find that they fail to achieve promising performance. As a new approach to this difficult problem, we propose a time-aware literal encoder for entity alignment. The dataset and source code are publicly available to foster future research. Our work calls for more effective and practical embedding-based solutions to entity alignment.
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
Multi-hop Question Answering over Knowledge Graph~(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question on a large-scale Knowledge Graph (KG). To cope with the vast search space, existing work usually adopts a two-stage approach: it firstly retrieves a relatively small subgraph related to the question and then performs the reasoning on the subgraph to accurately find the answer entities. Although these two stages are highly related, previous work employs very different technical solutions for developing the retrieval and reasoning models, neglecting their relatedness in task essence. In this paper, we propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning. For model architecture, UniKGQA consists of a semantic matching module based on a pre-trained language model~(PLM) for question-relation semantic matching, and a matching information propagation module to propagate the matching information along the edges on KGs. For parameter learning, we design a shared pre-training task based on question-relation matching for both retrieval and reasoning models, and then propose retrieval- and reasoning-oriented fine-tuning strategies. Compared with previous studies, our approach is more unified, tightly relating the retrieval and reasoning stages. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our method on the multi-hop KGQA task. Our codes and data are publicly available at https://github.com/RUCAIBox/UniKGQA.
translated by 谷歌翻译
实体对齐(EA)通过识别不同图中的等效实体来合并知识图(kgs),这些实体可以有效地丰富KGS的知识表示。但是,在实践中,不同的公斤通常包括悬挂的实体,在另一个图中找不到对应物的悬挂实体,这限制了EA方法的性能。为了通过悬挂实体改善EA,我们提出了一种无监督的方法,称为“半约束最佳运输实体对齐”(Sotead)。我们的主要思想是将两个公斤之间的实体对准建模为从一个公斤实体到其他实体的最佳运输问题。首先,我们基于验证的单词嵌入在kgs之间设置伪实体对。然后,我们进行对比度度量学习以获得每个实体对之间的运输成本。最后,我们为每个公斤介绍一个虚拟实体,以“对齐”其他kg的悬挂实体,从而放松优化约束,并导致半约束最佳运输。在实验部分中,我们首先显示了Sotead在常用实体对齐数据集上的优越性。此外,为了分析与其他基线的悬挂实体检测能力,我们构建了一个医学跨语言知识图数据集Meded,我们的Sotead也达到了最先进的性能。
translated by 谷歌翻译
在社交媒体上传播谣言对社会构成了重要威胁,因此最近提出了各种谣言检测技术。然而,现有的工作重点是\ emph {what}实体构成谣言,但几乎没有支持理解\ emph {为什么}实体已被归类为这样。这样可以防止对检测的谣言以及对策设计的有效评估。在这项工作中,我们认为,可以通过过去检测到的相关谣言的例子来给出检测到的谣言的解释。一系列类似的谣言有助于用户概括,即了解控制谣言的探测的特性。由于通常使用特征声明的图表对社交媒体的谣言传播通常是建模的,因此我们提出了一种逐个示例的方法,鉴于谣言图,它从过去的谣言中提取了$ k $最相似和最多的子图。挑战是所有计算都需要快速评估图之间的相似性。为了在流式设置中实现该方法的有效和适应性实现,我们提出了一种新颖的图表学习技术,并报告了实施注意事项。我们的评估实验表明,我们的方法在为各种谣言传播行为提供有意义的解释方面优于基线技术。
translated by 谷歌翻译
问题回答(QA)对知识库(KBS)的挑战是充满挑战的,因为所需的推理模式多样化,本质上是无限的,类型的推理模式。但是,我们假设以大型KB为基础,以回答各自子图中各个实体的查询类型所需的推理模式。利用不同子图的本地社区之间的这种结构相似性,我们引入了一个半参数模型(cbr-subg),(i)一个非参数组件,每个查询,每个查询,都会动态检索其他类似的$ k $ - $ - $ - $ - near-neart-tebrienk(KNN)培训查询以及查询特定的子图和(ii)训练的参数组件,该参数分量可以从KNN查询的子图中识别(潜在的)推理模式,然后将其应用于目标查询的子图。我们还提出了一种自适应子图收集策略,以选择特定于查询的compact子图,从而使我们可以扩展到包含数十亿个事实的完整freebase kb。我们表明,CBR-SUBG可以回答需要子图推理模式的查询,并在几个KBQA基准上的最佳模型竞争性能。我们的子图收集策略还会产生更多紧凑的子图(例如,webQSP的尺寸减小55 \%,而将答案召回的召回率增加4.85 \%)\ footNote {代码,模型和子码头可在\ url {https://github.com上获得。 /rajarshd/cbr-subg}}。
translated by 谷歌翻译
实体对齐(EA)在学术界和工业中都引起了广泛的关注,该行业旨在寻求具有不同知识图(KGS)相同含义的实体。 KGS中的实体之间存在实质性的多步关系路径,表明实体的语义关系。但是,现有方法很少考虑路径信息,因为并非所有自然路径都促进EA判断。在本文中,我们提出了一个更有效的实体对齐框架RPR-RHGT,该框架集成了关系和路径结构信息以及KGS中的异质信息。令人印象深刻的是,开发了一种初始可靠的路径推理算法来生成有利于EA任务的路径,从KGS的关系结构中,这是文献中第一个成功使用无限制路径信息的算法。此外,为了有效地捕获实体社区中的异质特征,设计的异质图变压器旨在建模KGS的关系和路径结构。在三个著名数据集上进行的广泛实验表明,RPR-RHGT的表现明显优于11种最佳方法,超过了命中率@1的最佳性能基线最高8.62%。我们还表现出比基线在训练集的不同比率和更难数据集的基线上更好的性能。
translated by 谷歌翻译
最近的进步表明,使用强化学习和搜索来解决NP-HARD相关的任务的成功,例如旅行推销员优化,图表编辑距离计算等。但是,尚不清楚如何有效,准确地检测到如何有效地检测大型目标图中的一个小查询图,它是图数据库搜索,生物医学分析,社交组发现等中的核心操作。此任务称为子图匹配,本质上是在查询图和大型目标图之间执行子图同构检查。解决这个经典问题的一种有前途的方法是“学习进行搜索”范式,其中强化学习(RL)代理人的设计具有学习的政策,以指导搜索算法以快速找到解决方案而无需任何解决方案实例进行监督。但是,对于子图匹配的特定任务,尽管查询图通常由用户作为输入给出,但目标图通常更大。它为神经网络设计带来了挑战,并可能导致解决方案和奖励稀疏性。在本文中,我们提出了两项​​创新的N-BLS来应对挑战:(1)一种新颖的编码器折线神经网络体系结构,以动态计算每个搜索状态下查询和目标图之间的匹配信息; (2)蒙特卡洛树搜索增强了双层搜索框架,用于培训政策和价值网络。在五个大型现实世界目标图上进行的实验表明,N-BLS可以显着改善子图匹配性能。
translated by 谷歌翻译
知识图表通常掺入到推荐系统,以提高整体性能。由于知识图的推广和规模,大多数知识的关系是不是目标用户项预测有帮助。要利用知识图在推荐系统捕捉目标具体知识的关系,我们需要提炼知识图,以保留有用的信息和完善的知识来捕捉用户的喜好。为了解决这个问题,我们提出了知识感知条件注意网络(KCAN),这是一个终端到终端的模式纳入知识图形转换为推荐系统。具体来说,我们使用一个知识感知注意传播方式,以获得所述节点表示第一,其捕获用户 - 项目网络和知识图表对全球语义相似度。然后给出一个目标,即用户 - 项对,我们会自动提炼出知识图到基于知识感知关注的具体目标子。随后,通过在应用子有条件的注意力聚集,我们细化知识图,以获得特定目标节点表示。因此,我们可以得到两个表示性和个性化,以实现整体性能。现实世界的数据集实验结果表明,我们对国家的最先进的算法框架的有效性。
translated by 谷歌翻译
知识图表问题基于信息检索旨在通过从大型知识图表中检索答案来回答问题来回答(即,kgqa)。大多数现有方法首先粗略地检索可能包含候选答案的知识子图(KSG),然后搜索子图中的确切答案。然而,粗略检索的KSG可以包含数千个候选节点,因为查询中涉及的知识图通常是大规模的。为了解决这个问题,我们首先建议通过新的子图分区算法将检索到的ksg分区为几个较小的子ksgs,然后呈现一个图形增强学习,以便测量模型以从中选择排名的子ksgs。我们所提出的模型结合了新的子图匹配网络,以捕获问题和子图中的全局交互以及增强的双边多视角匹配模型,以捕获局部交互。最后,我们分别在全KSG和排名级分ksg上应用答案选择模型,以验证我们提出的图形增强学习的效果。多个基准数据集的实验结果表明了我们方法的有效性。
translated by 谷歌翻译
Conventional representation learning algorithms for knowledge graphs (KG) map each entity to a unique embedding vector, ignoring the rich information contained in the neighborhood. We propose a method named StarGraph, which gives a novel way to utilize the neighborhood information for large-scale knowledge graphs to obtain entity representations. An incomplete two-hop neighborhood subgraph for each target node is at first generated, then processed by a modified self-attention network to obtain the entity representation, which is used to replace the entity embedding in conventional methods. We achieved SOTA performance on ogbl-wikikg2 and got competitive results on fb15k-237. The experimental results proves that StarGraph is efficient in parameters, and the improvement made on ogbl-wikikg2 demonstrates its great effectiveness of representation learning on large-scale knowledge graphs. The code is now available at \url{https://github.com/hzli-ucas/StarGraph}.
translated by 谷歌翻译