本文提出了一种基于条件互信息(CMI)的新型特征选择方法。提出的高阶条件互信息最大化(HOCMIM)将高阶依赖性纳入特征选择过程中,并且由于其自下而上的推导而具有直接的解释。HOCMIM源自CMI的链膨胀,并表示为最大化优化问题。最大化问题是使用贪婪的搜索过程解决的,该过程加快了整个功能选择过程。实验是在一组基准数据集上运行的(总共20个)。将HOCMIM与两个有监督的学习分类器(支持向量机和K-Nearest邻居)的结果进行比较。HOCMIM在准确性方面取得了最佳效果,并且表明要比高级特征选择的速度快。
translated by 谷歌翻译
Mutual Information (MI) based feature selection makes use of MI to evaluate each feature and eventually shortlists a relevant feature subset, in order to address issues associated with high-dimensional datasets. Despite the effectiveness of MI in feature selection, we notice that many state-of-the-art algorithms disregard the so-called unique relevance (UR) of features, and arrive at a suboptimal selected feature subset which contains a non-negligible number of redundant features. We point out that the heart of the problem is that all these MIBFS algorithms follow the criterion of Maximize Relevance with Minimum Redundancy (MRwMR), which does not explicitly target UR. This motivates us to augment the existing criterion with the objective of boosting unique relevance (BUR), leading to a new criterion called MRwMR-BUR. Depending on the task being addressed, MRwMR-BUR has two variants, termed MRwMR-BUR-KSG and MRwMR-BUR-CLF, which estimate UR differently. MRwMR-BUR-KSG estimates UR via a nearest-neighbor based approach called the KSG estimator and is designed for three major tasks: (i) Classification Performance. (ii) Feature Interpretability. (iii) Classifier Generalization. MRwMR-BUR-CLF estimates UR via a classifier based approach. It adapts UR to different classifiers, further improving the competitiveness of MRwMR-BUR for classification performance oriented tasks. The performance of both MRwMR-BUR-KSG and MRwMR-BUR-CLF is validated via experiments using six public datasets and three popular classifiers. Specifically, as compared to MRwMR, the proposed MRwMR-BUR-KSG improves the test accuracy by 2% - 3% with 25% - 30% fewer features being selected, without increasing the algorithm complexity. MRwMR-BUR-CLF further improves the classification performance by 3.8%- 5.5% (relative to MRwMR), and it also outperforms three popular classifier dependent feature selection methods.
translated by 谷歌翻译
Selecting a minimal feature set that is maximally informative about a target variable is a central task in machine learning and statistics. Information theory provides a powerful framework for formulating feature selection algorithms -- yet, a rigorous, information-theoretic definition of feature relevancy, which accounts for feature interactions such as redundant and synergistic contributions, is still missing. We argue that this lack is inherent to classical information theory which does not provide measures to decompose the information a set of variables provides about a target into unique, redundant, and synergistic contributions. Such a decomposition has been introduced only recently by the partial information decomposition (PID) framework. Using PID, we clarify why feature selection is a conceptually difficult problem when approached using information theory and provide a novel definition of feature relevancy and redundancy in PID terms. From this definition, we show that the conditional mutual information (CMI) maximizes relevancy while minimizing redundancy and propose an iterative, CMI-based algorithm for practical feature selection. We demonstrate the power of our CMI-based algorithm in comparison to the unconditional mutual information on benchmark examples and provide corresponding PID estimates to highlight how PID allows to quantify information contribution of features and their interactions in feature-selection problems.
translated by 谷歌翻译
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. These areas include text processing of internet documents, gene expression array analysis, and combinatorial chemistry. The objective of variable selection is three-fold: improving the prediction performance of the predictors, providing faster and more cost-effective predictors, and providing a better understanding of the underlying process that generated the data. The contributions of this special issue cover a wide range of aspects of such problems: providing a better definition of the objective function, feature construction, feature ranking, multivariate feature selection, efficient search methods, and feature validity assessment methods.
translated by 谷歌翻译
相关特征的识别,即确定系统的过程或属性的驱动变量,是对具有大量变量的数据集分析的重要组成部分。量化这些特征相关性的数学严格方法是相互信息。相互信息确定特征在其联合相互依赖与感兴趣的财产方面的相关性。但是,相互信息需要作为输入概率分布,这不能可靠地从连续分布(例如长度或能量)等连续分布中估计。在这里,我们介绍了总累积共同信息(TCMI),这是对相互依赖关系的相关性的度量,该信息将相互信息扩展到基于累积概率分布的连续分布的随机变量。 TCMI是一种非参数,鲁棒和确定性的度量,可促进具有不同基数的特征集之间的比较和排名。 TCMI诱导的排名允许特征选择,即,考虑到数据示例的数量以及一组变量集的基数,识别与感兴趣属性的非线性统计学相关的变量集的识别。我们通过模拟数据评估测量的性能,将其性能与类似的多元依赖性度量进行比较,并在一组标准数据集中证明了我们的功能选择方法的有效性以及材料科学中的典型情况。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
从大量嘈杂的候选人中选择一小部分信息功能是一个充满挑战的问题,即机器学习和近似贝叶斯计算中的许多应用程序。在实践中,还需要考虑计算信息丰富功能的成本。这对于网络尤为重要,因为单个功能的计算成本可以跨越几个数量级。我们使用两种方法解决了网络模型选择问题的问题。首先,我们调整了九种功能选择方法来说明功能成本。我们为两类网络模型显示,可以通过两个数量级降低成本,而不会极大地影响分类精度(正确识别的模型的比例)。其次,我们使用具有较小网络的Pilot模拟选择了功能。这种方法将计算成本降低了50倍,而不会影响分类精度。为了证明我们的方法的实用性,我们将其应用于三个不同的酵母蛋白相互作用网络,并确定了最合适的重复差异模型。
translated by 谷歌翻译
我们介绍了强大的子组发现的问题,即,找到一个关于一个或多个目标属性的脱颖而出的子集的一组可解释的描述,2)是统计上的鲁棒,并且3)非冗余。许多尝试已经挖掘了局部强壮的子组或解决模式爆炸,但我们是第一个从全球建模角度同时解决这两个挑战的爆炸。首先,我们制定广泛的模型类别的子组列表,即订购的子组,可以组成的单次组和多变量目标,该目标可以由标称或数字变量组成,并且包括其定义中的传统Top-1子组发现。这种新颖的模型类允许我们使用最小描述长度(MDL)原理来形式地形化最佳强大的子组发现,在那里我们分别为标称和数字目标的最佳归一化最大可能性和贝叶斯编码而度假。其次,正如查找最佳子组列表都是NP-Hard,我们提出了SSD ++,一个贪婪的启发式,找到了很好的子组列表,并保证了根据MDL标准的最重要的子组在每次迭代中添加,这被显示为等同于贝叶斯一个样本比例,多项式或子组之间的多项式或T检验,以及数据集边际目标分布以及多假设检测罚款。我们经验上显示了54个数据集,即SSD ++优于先前的子组设置发现方法和子组列表大小。
translated by 谷歌翻译
在工程设计过程中的一个重要问题是制定一种了解哪些设计参数对性能影响最大。特别是在优化方法中,这种知识对于实现有效的设计过程并实现高性能结果来实现这一知识。信息理论提供了强大的工具来调查这些关系,因为措施是无模型的,因此还捕获非线性关系,同时仅需要对输入数据的最小假设。因此,我们建议使用最近引入的信息 - 理论方法和估计算法来找到优化结果中最有影响力的输入参数。所提出的方法尤其能够考虑参数之间的相互作用,这些方法通常被忽略,但可能导致多个参数的冗余或协同贡献。我们展示了这些方法在航空航天工程中的优化数据中的应用,在那里我们首先使用最近引入的信息理论特征选择算法来确定最相关的优化参数,该特征选择算法考虑参数之间的交互。其次,我们使用新颖的部分信息分解(PID)框架,该框架允许在所选参数与优化结果方面的冗余和协同贡献来识别参数交互。因此,我们展示了新颖的信息理论方法在识别优化运行中的相关参数中的力量,并突出这些方法如何避免选择冗余参数,同时检测到导致多个参数的协同贡献的交互。
translated by 谷歌翻译
机器学习(ML)应用程序的数据量不断增长。不仅是观察的数量,特别是测量变量的数量(特征)增加了持续的数字化。选择最适合预测建模的功能是ML在商业和研究中取得成功的重要杠杆。特征选择方法(FSM)独立于某种ML算法 - 所谓的过滤方法 - 已毫无意义地建议,但研究人员和定量建模的指导很少,以选择典型ML问题的适当方法。本次审查在特征选择基准上综合了大量文献,并评估了58种方法在广泛使用的R环境中的性能。对于具体的指导,我们考虑了四种典型的数据集方案,这些情况挑战ML模型(嘈杂,冗余,不平衡数据和具有比观察特征更多的案例)。绘制早期基准的经验,该基准测试较少的FSMS,我们根据四个标准进行比较方法的性能(预测性能,所选的相关功能数,功能集和运行时的稳定性)。我们发现依赖于随机森林方法的方法,双输入对称相关滤波器(浪费)和联合杂质滤波器(Jim)是给定的数据集方案的良好性候选方法。
translated by 谷歌翻译
由于巨大的未标记数据的出现,现在已经增加了更加关注无监督的功能选择。需要考虑使用更有效的顺序使用样品训练学习方法的样本和潜在效果的分布,以提高该方法的鲁棒性。自定步学习是考虑样本培训顺序的有效方法。在本研究中,通过整合自花枢学习和子空间学习框架来提出无监督的特征选择。此外,保留了局部歧管结构,并且特征的冗余受到两个正则化术语的约束。 $ l_ {2,1 / 2} $ - norm应用于投影矩阵,旨在保留歧视特征,并进一步缓解数据中噪声的影响。然后,提出了一种迭代方法来解决优化问题。理论上和实验证明了该方法的收敛性。将所提出的方法与九个现实世界数据集上的其他技术的算法进行比较。实验结果表明,该方法可以提高聚类方法的性能,优于其他比较算法。
translated by 谷歌翻译
我们介绍了数据科学预测生命周期中各个阶段开发和采用自动化的技术和文化挑战的说明概述,从而将重点限制为使用结构化数据集的监督学习。此外,我们回顾了流行的开源Python工具,这些工具实施了针对自动化挑战的通用解决方案模式,并突出了我们认为进步仍然需要的差距。
translated by 谷歌翻译
基因表达数据集通常具有高维度,因此需要有效且有效的方法来识别其属性的相对重要性。由于可能的解决方案的搜索空间的大小,属性子集评估特征选择方法往往不适用,因此在这些方案中使用特征对方法。文献中描述的大多数特征排名方法是单变量的方法,因此它们不会检测因子之间的相互作用。在本文中,我们提出了基于成对相关性和成对一致性的两种新的多变量特征排名方法,我们应用于三种基因表达分类问题。我们在统计上证明所提出的方法优于现有技术的状态,特征对方法进行分类方法聚类变化,CHI平方,相关性,信息增益,相关性和意义,以及基于与多目标的相关性和一致性的属性子集评估的特征选择方法进化搜索策略。
translated by 谷歌翻译
在许多学科中,在大量解释变量中推断反应变量的直接因果父母的问题具有很高的实际意义。但是,建立的方法通常至少会随着解释变量的数量而呈指数级扩展,难以扩展到非线性关系,并且很难扩展到周期性数据。受{\ em Debiased}机器学习方法的启发,我们研究了一种单Vs.-the-Rest特征选择方法,以发现响应的直接因果父母。我们提出了一种用于纯观测数据的算法,同时还提供理论保证,包括可能在周期存在下的部分非线性关系的情况。由于它仅需要对每个变量进行一个估计,因此我们的方法甚至适用于大图。与既定方法相比,我们证明了显着改善。
translated by 谷歌翻译
We present a new algorithm for Bayesian network structure learning, called Max-Min Hill-Climbing (MMHC). The algorithm combines ideas from local learning, constraint-based, and search-and-score techniques in a principled and effective way. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. In our extensive empirical evaluation MMHC outperforms on average and in terms of various metrics several prototypical and state-of-the-art algorithms, namely the PC, Sparse Candidate, Three Phase Dependency Analysis, Optimal Reinsertion, Greedy Equivalence Search, and Greedy Search. These are the first empirical results simultaneously comparing most of the major Bayesian network algorithms against each other. MMHC offers certain theoretical advantages, specifically over the Sparse Candidate algorithm, corroborated by our experiments. MMHC and detailed results of our study are publicly available at http://www.dsl-lab.org/supplements/mmhc paper/mmhc index.html.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
特征选择是数据科学流水线的重要步骤,以减少与大型数据集相关的复杂性。虽然对本主题的研究侧重于优化预测性能,但很少研究在特征选择过程的上下文中调查稳定性。在这项研究中,我们介绍了重复的弹性网技术(租金)进行特色选择。租金使用具有弹性净正常化的广义线性模型的集合,每个训练都培训了训练数据的不同子集。该特征选择基于三个标准评估所有基本模型的重量分布。这一事实导致选择具有高稳定性的特征,从而提高最终模型的稳健性。此外,与已建立的特征选择器不同,租金提供了有关在训练期间难以预测的数据中难以预测的对象的模型解释的有价值信息。在我们的实验中,我们在八个多变量数据集中对六个已建立的特征选择器进行基准测试,用于二进制分类和回归。在实验比较中,租金在预测性能和稳定之间展示了均衡的权衡。最后,我们强调了租金的额外解释价值与医疗保健数据集的探索性后HOC分析。
translated by 谷歌翻译
While methods for comparing two learning algorithms on a single data set have been scrutinized for quite some time already, the issue of statistical tests for comparisons of more algorithms on multiple data sets, which is even more essential to typical machine learning studies, has been all but ignored. This article reviews the current practice and then theoretically and empirically examines several suitable tests. Based on that, we recommend a set of simple, yet safe and robust non-parametric tests for statistical comparisons of classifiers: the Wilcoxon signed ranks test for comparison of two classifiers and the Friedman test with the corresponding post-hoc tests for comparison of more classifiers over multiple data sets. Results of the latter can also be neatly presented with the newly introduced CD (critical difference) diagrams.
translated by 谷歌翻译
机器学习对图像和视频数据的应用通常会产生高维特征空间。有效的功能选择技术确定了一个判别特征子空间,该子空间可降低计算和建模成本,而绩效很少。提出了一种新颖的监督功能选择方法,用于这项工作中的机器学习决策。所得测试分别称为分类和回归问题的判别功能测试(DFT)和相关特征测试(RFT)。 DFT和RFT程序进行了详细描述。此外,我们将DFT和RFT的有效性与几种经典特征选择方法进行了比较。为此,我们使用LENET-5为MNIST和时尚流行数据集获得的深度功能作为说明性示例。其他具有手工制作和基因表达功能的数据集也包括用于性能评估。实验结果表明,DFT和RFT可以在保持较高的决策绩效的同时明确,稳健地选择较低的尺寸特征子空间。
translated by 谷歌翻译
由于更高的维度和困难的班级,机器学习应用中的可用数据变得越来越复杂。根据类重叠,可分离或边界形状,以及组形态,存在各种各样的方法来测量标记数据的复杂性。许多技术可以转换数据才能找到更好的功能,但很少专注于具体降低数据复杂性。大多数数据转换方法主要是治疗维度方面,撇开类标签中的可用信息,当类别在某种方式复杂时,可以有用。本文提出了一种基于AutoEncoder的复杂性减少方法,使用类标签来告知损耗函数关于所生成的变量的充分性。这导致了三个不同的新功能学习者,得分手,斯卡尔和切片机。它们基于Fisher的判别比率,Kullback-Leibler发散和最小二乘支持向量机。它们可以作为二进制分类问题应用作为预处理阶段。跨越27个数据集和一系列复杂性和分类指标的彻底实验表明,课堂上通知的AutoEncoders执行优于4个其他流行的无监督功能提取技术,特别是当最终目标使用数据进行分类任务时。
translated by 谷歌翻译