Label Shift has been widely believed to be harmful to the generalization performance of machine learning models. Researchers have proposed many approaches to mitigate the impact of the label shift, e.g., balancing the training data. However, these methods often consider the underparametrized regime, where the sample size is much larger than the data dimension. The research under the overparametrized regime is very limited. To bridge this gap, we propose a new asymptotic analysis of the Fisher Linear Discriminant classifier for binary classification with label shift. Specifically, we prove that there exists a phase transition phenomenon: Under certain overparametrized regime, the classifier trained using imbalanced data outperforms the counterpart with reduced balanced data. Moreover, we investigate the impact of regularization to the label shift: The aforementioned phase transition vanishes as the regularization becomes strong.
translated by 谷歌翻译
过度参数化对现代机器学习(ML)模型的整体性能的好处是众所周知的。但是,在更颗粒状的数据亚组水平上过度参数化的影响知之甚少。最近的实证研究表明了令人鼓舞的结果:(i)当尚不清楚的团体时,对经验风险最小化训练的过度参数化模型(ERM)对少数群体的表现更好;(ii)当已知组时,对数据进行均采样以均衡的数据将产生过度参数化的制度中最新的群体临界性。在本文中,我们通过对少数群体过度参数化特征模型的风险进行理论研究来补充这些经验研究。在大多数和少数群体的回归功能不同的环境中,我们表明过度参数始终可以改善少数群体的绩效。
translated by 谷歌翻译
We introduce a tunable loss function called $\alpha$-loss, parameterized by $\alpha \in (0,\infty]$, which interpolates between the exponential loss ($\alpha = 1/2$), the log-loss ($\alpha = 1$), and the 0-1 loss ($\alpha = \infty$), for the machine learning setting of classification. Theoretically, we illustrate a fundamental connection between $\alpha$-loss and Arimoto conditional entropy, verify the classification-calibration of $\alpha$-loss in order to demonstrate asymptotic optimality via Rademacher complexity generalization techniques, and build-upon a notion called strictly local quasi-convexity in order to quantitatively characterize the optimization landscape of $\alpha$-loss. Practically, we perform class imbalance, robustness, and classification experiments on benchmark image datasets using convolutional-neural-networks. Our main practical conclusion is that certain tasks may benefit from tuning $\alpha$-loss away from log-loss ($\alpha = 1$), and to this end we provide simple heuristics for the practitioner. In particular, navigating the $\alpha$ hyperparameter can readily provide superior model robustness to label flips ($\alpha > 1$) and sensitivity to imbalanced classes ($\alpha < 1$).
translated by 谷歌翻译
许多最近的作品表明,过度分辨率隐含地降低了MIN-NORM Interpolator和Max-Maxifiers的方差。这些调查结果表明,RIDGE正则化在高维度下具有消失的益处。我们通过表明,即使在没有噪声的情况下,避免通过脊正则化的插值可以显着提高泛化。我们证明了这种现象,用于线性回归和分类的强大风险,因此提供了强大的过度装备的第一个理论结果。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
标签 - 不平衡和组敏感分类中的目标是优化相关的指标,例如平衡错误和相同的机会。经典方法,例如加权交叉熵,在训练深网络到训练(TPT)的终端阶段时,这是超越零训练误差的训练。这种观察发生了最近在促进少数群体更大边值的直观机制之后开发启发式替代品的动力。与之前的启发式相比,我们遵循原则性分析,说明不同的损失调整如何影响边距。首先,我们证明,对于在TPT中训练的所有线性分类器,有必要引入乘法,而不是添加性的Logit调整,以便对杂项边缘进行适当的变化。为了表明这一点,我们发现将乘法CE修改的连接到成本敏感的支持向量机。也许是违反,我们还发现,在培训开始时,相同的乘法权重实际上可以损害少数群体。因此,虽然在TPT中,添加剂调整无效,但我们表明它们可以通过对乘法重量的初始负效应进行抗衡来加速会聚。通过这些发现的动机,我们制定了矢量缩放(VS)丢失,即捕获现有技术作为特殊情况。此外,我们引入了对群体敏感分类的VS损失的自然延伸,从而以统一的方式处理两种常见类型的不平衡(标签/组)。重要的是,我们对最先进的数据集的实验与我们的理论见解完全一致,并确认了我们算法的卓越性能。最后,对于不平衡的高斯 - 混合数据,我们执行泛化分析,揭示平衡/标准错误和相同机会之间的权衡。
translated by 谷歌翻译
尽管过度参数化的模型已经在许多机器学习任务上表现出成功,但与培训不同的测试分布的准确性可能会下降。这种准确性下降仍然限制了在野外应用机器学习的限制。同时,重要的加权是一种处理分配转移的传统技术,已被证明在经验和理论上对过度参数化模型的影响较小甚至没有影响。在本文中,我们提出了重要的回火来改善决策界限,并为过度参数化模型取得更好的结果。从理论上讲,我们证明在标签移位和虚假相关设置下,组温度的选择可能不同。同时,我们还证明正确选择的温度可以解脱出少数群体崩溃的分类不平衡。从经验上讲,我们使用重要性回火来实现最严重的小组分类任务的最新结果。
translated by 谷歌翻译
我们研究随机梯度下降(SGD)动态轨迹的统计特性。我们将Mini-Batch SGD和动量SGD视为随机微分方程(SDES)。我们利用了SDE的连续制定和Fokker-Planck方程的理论,在逃避现象和大批次和尖锐最小值的关系中开发新结果。特别是,我们发现随机过程解决方案倾向于会聚到渐渐的最小值,而无论渐近状态中的批量大小如何。但是,收敛速度严格被证明依赖于批量尺寸。这些结果经验验证了各种数据集和模型。
translated by 谷歌翻译
While it has long been empirically observed that adversarial robustness may be at odds with standard accuracy and may have further disparate impacts on different classes, it remains an open question to what extent such observations hold and how the class imbalance plays a role within. In this paper, we attempt to understand this question of accuracy disparity by taking a closer look at linear classifiers under a Gaussian mixture model. We decompose the impact of adversarial robustness into two parts: an inherent effect that will degrade the standard accuracy on all classes, and the other caused by the class imbalance ratio, which will increase the accuracy disparity compared to standard training. Furthermore, we also extend our model to the general family of stable distributions. We demonstrate that while the constraint of adversarial robustness consistently degrades the standard accuracy in the balanced class setting, the class imbalance ratio plays a fundamentally different role in accuracy disparity compared to the Gaussian case, due to the heavy tail of the stable distribution. We additionally perform experiments on both synthetic and real-world datasets. The empirical results not only corroborate our theoretical findings, but also suggest that the implications may extend to nonlinear models over real-world datasets.
translated by 谷歌翻译
多级分类问题的广义线性模型是现代机器学习任务的基本构建块之一。在本手稿中,我们通过具有任何凸损耗和正规化的经验风险最小化(ERM)来描述与通用手段和协方士的k $高斯的混合。特别是,我们证明了表征ERM估计的精确渐近剂,以高维度,在文献中扩展了关于高斯混合分类的几个先前结果。我们举例说明我们在统计学习中的两个兴趣任务中的两个任务:a)与稀疏手段的混合物进行分类,我们研究了$ \ ell_2 $的$ \ ell_1 $罚款的效率; b)Max-Margin多级分类,在那里我们在$ k> 2 $的多级逻辑最大似然估计器上表征了相位过渡。最后,我们讨论了我们的理论如何超出合成数据的范围,显示在不同的情况下,高斯混合在真实数据集中密切地捕获了分类任务的学习曲线。
translated by 谷歌翻译
强大的机器学习模型的开发中的一个重要障碍是协变量的转变,当训练和测试集的输入分布时发生的分配换档形式在条件标签分布保持不变时发生。尽管现实世界应用的协变量转变普遍存在,但在现代机器学习背景下的理论理解仍然缺乏。在这项工作中,我们检查协变量的随机特征回归的精确高尺度渐近性,并在该设置中提出了限制测试误差,偏差和方差的精确表征。我们的结果激发了一种自然部分秩序,通过协变速转移,提供足够的条件来确定何时何时损害(甚至有助于)测试性能。我们发现,过度分辨率模型表现出增强的协会转变的鲁棒性,为这种有趣现象提供了第一个理论解释之一。此外,我们的分析揭示了分销和分发外概率性能之间的精确线性关系,为这一令人惊讶的近期实证观察提供了解释。
translated by 谷歌翻译
本文探讨了可变参数化模型系列的线性回归的概括性损失,包括在参数化和过度参数化的模型中。我们表明,泛化曲线可以具有任意数量的峰值,而且可以明确地控制这些峰的位置。我们的结果突出了经典U形泛化曲线和最近观察到的双下降曲线的事实不是模型系列的内在特性。相反,它们的出现是由于数据的性质与学习算法的感应偏差之间的相互作用。
translated by 谷歌翻译
了解通过随机梯度下降(SGD)训练的神经网络的特性是深度学习理论的核心。在这项工作中,我们采取了平均场景,并考虑通过SGD培训的双层Relu网络,以实现一个非变量正则化回归问题。我们的主要结果是SGD偏向于简单的解决方案:在收敛时,Relu网络实现输入的分段线性图,以及“结”点的数量 - 即,Relu网络估计器的切线变化的点数 - 在两个连续的训练输入之间最多三个。特别地,随着网络的神经元的数量,通过梯度流的解决方案捕获SGD动力学,并且在收敛时,重量的分布方法接近相关的自由能量的独特最小化器,其具有GIBBS形式。我们的主要技术贡献在于分析了这一最小化器产生的估计器:我们表明其第二阶段在各地消失,除了代表“结”要点的一些特定地点。我们还提供了经验证据,即我们的理论预测的不同可能发生与数据点不同的位置的结。
translated by 谷歌翻译
监督字典学习(SDL)是一种经典的机器学习方法,同时寻求特征提取和分类任务,不一定是先验的目标。 SDL的目的是学习类歧视性词典,这是一组潜在特征向量,可以很好地解释特征以及观察到的数据的标签。在本文中,我们提供了SDL的系统研究,包括SDL的理论,算法和应用。首先,我们提供了一个新颖的框架,该框架将“提升” SDL作为组合因子空间中的凸问题,并提出了一种低级别的投影梯度下降算法,该算法将指数成倍收敛于目标的全局最小化器。我们还制定了SDL的生成模型,并根据高参数制度提供真实参数的全局估计保证。其次,我们被视为一个非convex约束优化问题,我们为SDL提供了有效的块坐标下降算法,该算法可以保证在$ O(\ varepsilon^{ - 1}(\ log)中找到$ \ varepsilon $ - 定位点(\ varepsilon \ varepsilon^{ - 1})^{2})$ iterations。对于相应的生成模型,我们为受约束和正则化的最大似然估计问题建立了一种新型的非反应局部一致性结果,这可能是独立的。第三,我们将SDL应用于监督主题建模和胸部X射线图像中的肺炎检测中,以进行不平衡的文档分类。我们还提供了模拟研究,以证明当最佳的重建性和最佳判别词典之间存在差异时,SDL变得更加有效。
translated by 谷歌翻译
我们研究了称为“乐观速率”(Panchenko 2002; Srebro等,2010)的统一收敛概念,用于与高斯数据的线性回归。我们的精致分析避免了现有结果中的隐藏常量和对数因子,这已知在高维设置中至关重要,特别是用于了解插值学习。作为一个特殊情况,我们的分析恢复了Koehler等人的保证。(2021年),在良性过度的过度条件下,严格地表征了低规范内插器的人口风险。但是,我们的乐观速度绑定还分析了具有任意训练错误的预测因子。这使我们能够在随机设计下恢复脊和套索回归的一些经典统计保障,并有助于我们在过度参数化制度中获得精确了解近端器的过度风险。
translated by 谷歌翻译
最近的作品证明了过度参数化学习中的双重下降现象:随着模型参数的数量的增加,多余的风险具有$ \ mathsf {u} $ - 在开始时形状,然后在模型高度过度参数化时再次减少。尽管最近在不同的环境(例如线性模型,随机特征模型和内核方法)下进行了研究,但在理论上尚未完全理解这种现象。在本文中,我们考虑了由两种随机特征组成的双随机特征模型(DRFM),并研究DRFM在脊回归中实现的多余风险。我们计算高维框架下的多余风险的确切限制,在这种框架上,训练样本量,数据尺寸和随机特征的维度往往会成比例地无限。根据计算,我们证明DRFM的风险曲线可以表现出三重下降。然后,我们提供三重下降现象的解释,并讨论随机特征维度,正则化参数和信噪比比率如何控制DRFMS风险曲线的形状。最后,我们将研究扩展到多个随机功能模型(MRFM),并表明具有$ K $类型的随机功能的MRFM可能会显示出$(K+1)$ - 折叠。我们的分析指出,具有特定数量下降的风险曲线通常在基于特征的回归中存在。另一个有趣的发现是,当学习神经网络在“神经切线内核”制度中时,我们的结果可以恢复文献中报告的风险峰值位置。
translated by 谷歌翻译
现代深度学习系统的区别特征之一是,它们通常采用利用巨大数量的参数,通常在数百万中使用的神经网络架构。虽然这个范例对大型网络的性质启发了重要研究,但是致力于这些网络通常用于建模大型复杂数据集的事实,而且它们本身可能包含数百万甚至数十亿的约束的事实。在这项工作中,我们专注于这种高维制度,其中数据集大小和特征数量往往是无限的。我们分析随机重量矩阵$ W $和随机偏置向量$ B $的随机特征回归的性能$ f = f(wx + b)$ b $,获取用于渐近培训的确切公式,并对数据产生的数据进行测试错误一个线性教师模型。偏差的作用可以理解为参数化在激活功能上的分布,并且我们的分析直接推广到这种分布,即使是传统的附加偏差不表达的那些分布。有趣的是,我们发现非线性的混合物可以通过最好的单一非线性来改善训练和测试误差,这表明非线性的混合物可能对近似内核方法或神经网络架构设计有用。
translated by 谷歌翻译
It is widely believed that given the same labeling budget, active learning algorithms like uncertainty sampling achieve better predictive performance than passive learning (i.e. uniform sampling), albeit at a higher computational cost. Recent empirical evidence suggests that this added cost might be in vain, as uncertainty sampling can sometimes perform even worse than passive learning. While existing works offer different explanations in the low-dimensional regime, this paper shows that the underlying mechanism is entirely different in high dimensions: we prove for logistic regression that passive learning outperforms uncertainty sampling even for noiseless data and when using the uncertainty of the Bayes optimal classifier. Insights from our proof indicate that this high-dimensional phenomenon is exacerbated when the separation between the classes is small. We corroborate this intuition with experiments on 20 high-dimensional datasets spanning a diverse range of applications, from finance and histology to chemistry and computer vision.
translated by 谷歌翻译
对于由缺陷线性回归中的标签噪声引起的预期平均平方概率,我们证明了无渐近分布的下限。我们的下部结合概括了过度公共数据(内插)制度的类似已知结果。与最先前的作品相比,我们的分析适用于广泛的输入分布,几乎肯定的全排列功能矩阵,允许我们涵盖各种类型的确定性或随机特征映射。我们的下限是渐近的锐利,暗示在存在标签噪声时,缺陷的线性回归不会在任何这些特征映射中围绕内插阈值进行良好的。我们详细分析了强加的假设,并为分析(随机)特征映射提供了理论。使用此理论,我们可以表明我们的假设对于具有(Lebesgue)密度的输入分布以及随机深神经网络给出的特征映射,具有Sigmoid,Tanh,SoftPlus或Gelu等分析激活功能。作为进一步的例子,我们示出了来自随机傅里叶特征和多项式内核的特征映射也满足我们的假设。通过进一步的实验和分析结果,我们补充了我们的理论。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译