轨迹预测在智能车辆或社会机器人领域发挥着关键作用。最近的作品侧重于建模空间社会影响或时间运动注意,但忽视了运动的固有特征,即移动趋势和驾驶意图。本文提出了一种用于车辆轨迹预测的无背景的分层运动编码器 - 解码器网络(HMNET)。 HMNET首先揭示了运动的分层差异,以编码具有高富有动态趋势和驾驶意图的高效力的物理兼容模式。然后,根据位置 - 速度 - 加速相关模式分层地分层地构建多模式预测的目标(端点)。此外,我们介绍了一个修改的社交池模块,它考虑了某些运动属性来代表社交交互。 HMNET可以实现准确,单峰/多模式和物理上兼容的预测。三个公共轨迹预测数据集的实验,即NGSIM,高达和交互表明,我们的模型定量和定性地实现了最先进的性能。我们将在此处发布我们的代码:https://github.com/xuedashuai/hmnet。
translated by 谷歌翻译
预测附近代理商的合理的未来轨迹是自治车辆安全的核心挑战,主要取决于两个外部线索:动态邻居代理和静态场景上下文。最近的方法在分别表征两个线索方面取得了很大进展。然而,它们忽略了两个线索之间的相关性,并且大多数很难实现地图自适应预测。在本文中,我们使用Lane作为场景数据,并提出一个分阶段网络,即共同学习代理和车道信息,用于多模式轨迹预测(JAL-MTP)。 JAL-MTP使用社交到LANE(S2L)模块来共同代表静态道和相邻代理的动态运动作为实例级车道,一种用于利用实例级车道来预测的反复出的车道注意力(RLA)机制来预测Map-Adaptive Future Trajections和两个选择器,可识别典型和合理的轨迹。在公共协议数据集上进行的实验表明JAL-MTP在定量和定性中显着优于现有模型。
translated by 谷歌翻译
安全可靠的自主驾驶堆栈(AD)的设计是我们时代最具挑战性的任务之一。预计这些广告将在具有完全自主权的高度动态环境中驱动,并且比人类更大的可靠性。从这个意义上讲,要高效,安全地浏览任意复杂的流量情景,广告必须具有预测周围参与者的未来轨迹的能力。当前的最新模型通常基于复发,图形和卷积网络,在车辆预测的背景下取得了明显的结果。在本文中,我们探讨了在生成模型进行运动预测中注意力的影响,考虑到物理和社会环境以计算最合理的轨迹。我们首先使用LSTM网络对过去的轨迹进行编码,该网络是计算社会背景的多头自我发言模块的输入。另一方面,我们制定了一个加权插值来计算最后一个观测框中的速度和方向,以便计算可接受的目标点,从HDMAP信息的可驱动的HDMAP信息中提取,这代表了我们的物理环境。最后,我们的发电机的输入是从多元正态分布采样的白噪声矢量,而社会和物理环境则是其条件,以预测可行的轨迹。我们使用Argoverse运动预测基准1.1验证我们的方法,从而实现竞争性的单峰结果。
translated by 谷歌翻译
在智能系统(例如自动驾驶和机器人导航)中,轨迹预测一直是一个长期存在的问题。最近在大规模基准测试的最新模型一直在迅速推动性能的极限,主要集中于提高预测准确性。但是,这些模型对效率的强调较少,这对于实时应用至关重要。本文提出了一个名为Gatraj的基于注意力的图形模型,其预测速度要高得多。代理的时空动力学,例如行人或车辆,是通过注意机制建模的。代理之间的相互作用是通过图卷积网络建模的。我们还实施了拉普拉斯混合物解码器,以减轻模式崩溃,并为每个代理生成多种模式预测。我们的模型以在多个开放数据集上测试的更高预测速度与最先进的模型相同的性能。
translated by 谷歌翻译
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation. As a result, multi-agent behavior prediction has become a core component of modern human-robot interactive systems, such as self-driving cars. While there exist many methods for trajectory forecasting, most do not enforce dynamic constraints and do not account for environmental information (e.g., maps). Towards this end, we present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents while incorporating agent dynamics and heterogeneous data (e.g., semantic maps). Trajectron++ is designed to be tightly integrated with robotic planning and control frameworks; for example, it can produce predictions that are optionally conditioned on ego-agent motion plans. We demonstrate its performance on several challenging real-world trajectory forecasting datasets, outperforming a wide array of state-ofthe-art deterministic and generative methods.
translated by 谷歌翻译
预测动态场景中的行人轨迹仍然是各种应用中的关键问题,例如自主驾驶和社会意识的机器人。由于人类和人类对象的相互作用和人类随机性引起的未来不确定性,这种预测是挑战。基于生成式模型的方法通过采样潜在变量来处理未来的不确定性。然而,很少有研究探索了潜在变量的产生。在这项工作中,我们提出了具有伪Oracle(TPPO)的轨迹预测器,这是一种基于模型的基于模型的轨迹预测因子。第一个伪甲骨文是行人的移动方向,第二个是从地面真理轨迹估计的潜在变量。社会注意力模块用于基于行人移动方向与未来轨迹之间的相关性聚集邻居的交互。这种相关性受到行人的未来轨迹往往受到前方行人的影响。提出了一种潜在的变量预测器来估计观察和地面轨迹的潜在可变分布。此外,在训练期间,这两个分布之间的间隙最小化。因此,潜在的变量预测器可以估计观察到的轨迹的潜变量,以近似从地面真理轨迹估计。我们将TPPO与在几个公共数据集上的相关方法进行比较。结果表明,TPPO优于最先进的方法,具有低平均和最终位移误差。作为测试期间的采样时间下降,消融研究表明预测性能不会显着降低。
translated by 谷歌翻译
We introduce a Deep Stochastic IOC 1 RNN Encoderdecoder framework, DESIRE, for the task of future predictions of multiple interacting agents in dynamic scenes. DESIRE effectively predicts future locations of objects in multiple scenes by 1) accounting for the multi-modal nature of the future prediction (i.e., given the same context, future may vary), 2) foreseeing the potential future outcomes and make a strategic prediction based on that, and 3) reasoning not only from the past motion history, but also from the scene context as well as the interactions among the agents. DESIRE achieves these in a single end-to-end trainable neural network model, while being computationally efficient. The model first obtains a diverse set of hypothetical future prediction samples employing a conditional variational autoencoder, which are ranked and refined by the following RNN scoring-regression module. Samples are scored by accounting for accumulated future rewards, which enables better long-term strategic decisions similar to IOC frameworks. An RNN scene context fusion module jointly captures past motion histories, the semantic scene context and interactions among multiple agents. A feedback mechanism iterates over the ranking and refinement to further boost the prediction accuracy. We evaluate our model on two publicly available datasets: KITTI and Stanford Drone Dataset. Our experiments show that the proposed model significantly improves the prediction accuracy compared to other baseline methods.
translated by 谷歌翻译
Understanding human motion behavior is critical for autonomous moving platforms (like self-driving cars and social robots) if they are to navigate human-centric environments. This is challenging because human motion is inherently multimodal: given a history of human motion paths, there are many socially plausible ways that people could move in the future. We tackle this problem by combining tools from sequence prediction and generative adversarial networks: a recurrent sequence-to-sequence model observes motion histories and predicts future behavior, using a novel pooling mechanism to aggregate information across people. We predict socially plausible futures by training adversarially against a recurrent discriminator, and encourage diverse predictions with a novel variety loss. Through experiments on several datasets we demonstrate that our approach outperforms prior work in terms of accuracy, variety, collision avoidance, and computational complexity.
translated by 谷歌翻译
作为自主驱动系统的核心技术,行人轨迹预测可以显着提高主动车辆安全性的功能,减少道路交通损伤。在交通场景中,当遇到迎面而来的人时,行人可能会立即转动或停止,这通常会导致复杂的轨迹。为了预测这种不可预测的轨迹,我们可以深入了解行人之间的互动。在本文中,我们提出了一种名为Spatial Interaction Transformer(SIT)的新型生成方法,其通过注意机制学习行人轨迹的时空相关性。此外,我们介绍了条件变形Autiachoder(CVAE)框架来模拟未来行人的潜在行动状态。特别是,基于大规模的TRAFC数据集NUSCENES [2]的实验显示,坐下的性能优于最先进的(SOTA)方法。对挑战性的Eth和UCY数据集的实验评估概述了我们提出的模型的稳健性
translated by 谷歌翻译
预测公路参与者的未来运动对于自动驾驶至关重要,但由于令人震惊的运动不确定性,因此极具挑战性。最近,大多数运动预测方法求助于基于目标的策略,即预测运动轨迹的终点,作为回归整个轨迹的条件,以便可以减少解决方案的搜索空间。但是,准确的目标坐标很难预测和评估。此外,目的地的点表示限制了丰富的道路环境的利用,从而导致预测不准确。目标区域,即可能的目的地区域,而不是目标坐标,可以通过涉及更多的容忍度和指导来提供更软的限制,以搜索潜在的轨迹。考虑到这一点,我们提出了一个新的基于目标区域的框架,名为“目标区域网络”(GANET)进行运动预测,该框架对目标区域进行了建模,而不是确切的目标坐标作为轨迹预测的先决条件,更加可靠,更准确地执行。具体而言,我们建议一个goicrop(目标的目标区域)操作员有效地提取目标区域中的语义巷特征,并在目标区域和模型演员的未来互动中提取语义巷,这对未来的轨迹估计很大。 Ganet在所有公共文献(直到论文提交)中排名第一个,将其源代码排在第一位。
translated by 谷歌翻译
变量自动编码器(VAE)已广泛用于建模数据分布,因为它在理论上优雅,易于训练并且具有不错的多种形式表示。但是,当应用于图像重建和合成任务时,VAE显示了生成样品往往模糊的局限性。我们观察到一个类似的问题,其中生成的轨迹位于相邻的车道之间,通常是在基于VAE的轨迹预测模型中出现的。为了减轻此问题,我们将层次潜在结构引入基于VAE的预测模型。基于以下假设,即可以将轨迹分布近似为简单分布(或模式)的混合物,因此使用低级潜在变量来对混合物的每种模式进行建模,并采用了高级潜在变量来表示权重代表权重对于模式。为了准确地对每个模式进行建模,我们使用以新颖方式计算的两个车道级别上下文向量来调节低级潜在变量,一种对应于车道相互作用,另一个对应于车辆车辆的相互作用。上下文向量还用于通过建议的模式选择网络对权重进行建模。为了评估我们的预测模型,我们使用两个大型现实世界数据集。实验结果表明,我们的模型不仅能够生成清晰的多模式轨迹分布,而且还可以优于最新模型(SOTA)模型。我们的代码可在https://github.com/d1024choi/hlstrajforecast上找到。
translated by 谷歌翻译
仿真是对机器人系统(例如自动驾驶汽车)进行扩展验证和验证的关键。尽管高保真物理和传感器模拟取得了进步,但在模拟道路使用者的现实行为方面仍然存在一个危险的差距。这是因为,与模拟物理和图形不同,设计人类行为的第一个原理模型通常是不可行的。在这项工作中,我们采用了一种数据驱动的方法,并提出了一种可以学会从现实世界驱动日志中产生流量行为的方法。该方法通过将交通仿真问题分解为高级意图推理和低级驾驶行为模仿,通过利用驾驶行为的双层层次结构来实现高样本效率和行为多样性。该方法还结合了一个计划模块,以获得稳定的长马行为。我们从经验上验证了我们的方法,即交通模拟(位)的双层模仿,并具有来自两个大规模驾驶数据集的场景,并表明位表明,在现实主义,多样性和长途稳定性方面可以达到平衡的交通模拟性能。我们还探索了评估行为现实主义的方法,并引入了一套评估指标以进行交通模拟。最后,作为我们的核心贡献的一部分,我们开发和开源一个软件工具,该工具将跨不同驱动数据集的数据格式统一,并将现有数据集将场景转换为交互式仿真环境。有关其他信息和视频,请参见https://sites.google.com/view/nvr-bits2022/home
translated by 谷歌翻译
为了安全和合理地参与密集和异质的交通,自动驾驶汽车需要充分分析周围交通代理的运动模式,并准确预测其未来的轨迹。这是具有挑战性的,因为交通代理的轨迹不仅受交通代理本身的影响,而且还受到彼此的空间互动的影响。以前的方法通常依赖于长期短期存储网络(LSTMS)的顺序逐步处理,并仅提取单型交通代理之间的空间邻居之间的相互作用。我们提出了时空变压器网络(S2TNET),该网络通过时空变压器对时空相互作用进行建模,并通过时间变压器处理颞序序列。我们将其他类别,形状和标题信息输入到我们的网络中,以处理交通代理的异质性。在Apolloscape轨迹数据集上,所提出的方法在平均值和最终位移误差的加权总和上优于Apolloscape轨迹数据集的最先进方法。我们的代码可在https://github.com/chenghuang66/s2tnet上找到。
translated by 谷歌翻译
预测交通参与者的多模式未来行为对于机器人车辆做出安全决策至关重要。现有作品探索以直接根据潜在特征预测未来的轨迹,或利用密集的目标候选者来识别代理商的目的地,在这种情况下,由于所有运动模式均来自相同的功能,而后者的策略具有效率问题,因此前者策略的收敛缓慢,因为其性能高度依赖关于候选目标的密度。在本文中,我们提出了运动变压器(MTR)框架,该框架将运动预测模拟为全球意图定位和局部运动改进的联合优化。 MTR不使用目标候选者,而是通过采用一系列可学习的运动查询对来结合空间意图。每个运动查询对负责特定运动模式的轨迹预测和完善,这可以稳定训练过程并促进更好的多模式预测。实验表明,MTR在边际和联合运动预测挑战上都达到了最新的性能,在Waymo Open Motion DataSet排行榜上排名第一。代码将在https://github.com/sshaoshuai/mtr上找到。
translated by 谷歌翻译
预测道路用户的未来行为是自主驾驶中最具挑战性和最重要的问题之一。应用深度学习对此问题需要以丰富的感知信号和地图信息的形式融合异构世界状态,并在可能的期货上推断出高度多模态分布。在本文中,我们呈现MultiPath ++,这是一个未来的预测模型,实现了在流行的基准上实现最先进的性能。 MultiPath ++通过重新访问许多设计选择来改善多径架构。第一关键设计差异是偏离基于图像的基于输入世界状态的偏离,有利于异构场景元素的稀疏编码:多径++消耗紧凑且有效的折线,直接描述道路特征和原始代理状态信息(例如,位置,速度,加速)。我们提出了一种背景感知这些元素的融合,并开发可重用的多上下文选通融合组件。其次,我们重新考虑了预定义,静态锚点的选择,并开发了一种学习模型端到端的潜在锚嵌入的方法。最后,我们在其他ML域中探索合奏和输出聚合技术 - 常见的常见域 - 并为我们的概率多模式输出表示找到有效的变体。我们对这些设计选择进行了广泛的消融,并表明我们所提出的模型在协会运动预测竞争和Waymo开放数据集运动预测挑战上实现了最先进的性能。
translated by 谷歌翻译
从社交机器人到自动驾驶汽车,多种代理的运动预测(MP)是任意复杂环境中的至关重要任务。当前方法使用端到端网络解决了此问题,其中输入数据通常是场景的最高视图和所有代理的过去轨迹;利用此信息是获得最佳性能的必不可少的。从这个意义上讲,可靠的自动驾驶(AD)系统必须按时产生合理的预测,但是,尽管其中许多方法使用了简单的Convnets和LSTM,但在使用两个信息源时,模型对于实时应用程序可能不够有效(地图和轨迹历史)。此外,这些模型的性能在很大程度上取决于训练数据的数量,这可能很昂贵(尤其是带注释的HD地图)。在这项工作中,我们探讨了如何使用有效的基于注意力的模型在Argoverse 1.0基准上实现竞争性能,该模型将其作为最小地图信息的过去轨迹和基于地图的功能的输入,以确保有效且可靠的MP。这些功能代表可解释的信息作为可驱动区域和合理的目标点,与基于黑框CNN的地图处理方法相反。
translated by 谷歌翻译
Predicting the future motion of dynamic agents is of paramount importance to ensure safety or assess risks in motion planning for autonomous robots. In this paper, we propose a two-stage motion prediction method, referred to as R-Pred, that effectively utilizes both the scene and interaction context using a cascade of the initial trajectory proposal network and the trajectory refinement network. The initial trajectory proposal network produces M trajectory proposals corresponding to M modes of a future trajectory distribution. The trajectory refinement network enhances each of M proposals using 1) the tube-query scene attention (TQSA) and 2) the proposal-level interaction attention (PIA). TQSA uses tube-queries to aggregate the local scene context features pooled from proximity around the trajectory proposals of interest. PIA further enhances the trajectory proposals by modeling inter-agent interactions using a group of trajectory proposals selected based on their distances from neighboring agents. Our experiments conducted on the Argoverse and nuScenes datasets demonstrate that the proposed refinement network provides significant performance improvements compared to the single-stage baseline and that R-Pred achieves state-of-the-art performance in some categories of the benchmark.
translated by 谷歌翻译
自我监督学习(SSL)是一种新兴技术,已成功地用于培训卷积神经网络(CNNS)和图形神经网络(GNNS),以进行更可转移,可转换,可推广和稳健的代表性学习。然而,很少探索其对自动驾驶的运动预测。在这项研究中,我们报告了将自学纳入运动预测的首次系统探索和评估。我们首先建议研究四项新型的自我监督学习任务,以通过理论原理以及对挑战性的大规模argoverse数据集进行运动预测以及定量和定性比较。其次,我们指出,基于辅助SSL的学习设置不仅胜过预测方法,这些方法在性能准确性方面使用变压器,复杂的融合机制和复杂的在线密集目标候选优化算法,而且具有较低的推理时间和建筑复杂性。最后,我们进行了几项实验,以了解为什么SSL改善运动预测。代码在\ url {https://github.com/autovision-cloud/ssl-lanes}上开源。
translated by 谷歌翻译
随着跨领域的机器人在共享环境中开始与人类合作,使他们能够推理人类意图的算法对于实现安全的相互作用很重要。在我们的工作中,我们通过预测动态环境中的轨迹的问题来研究人类的意图。我们探索导航准则相对严格定义但在其物理环境中没有明确标记的域。我们假设在这些领域内,代理人倾向于表现出短期运动模式,这些模式揭示了与代理人的一般方向,中间目标和运动规则相关的上下文信息,例如社会行为。从这种直觉中,我们提出了社交模式,这是一种复发,多模式轨迹预测的算法,该预测利用运动模式来编码上述上下文。我们的方法通过学习预测短期运动模式来指导长期的轨迹预测。然后,它从模式中提取次目标信息,并将其汇总为社会环境。我们评估了跨三个领域的方法:人类人群,体育中的人类和码头领空中的载人飞机,以实现最先进的表现。
translated by 谷歌翻译
自主驾驶包括多个交互模块,其中每个模块必须与其他模块相反。通常,运动预测模块取决于稳健的跟踪系统以捕获每个代理的过去的移动。在这项工作中,我们系统地探讨了运动预测任务的跟踪模块的重要性,并且最终得出结论,整体运动预测性能对跟踪模块的缺陷非常敏感。我们明确比较了使用跟踪信息的模型,该模型不会跨越多种方案和条件。我们发现跟踪信息发挥着重要作用,并在无噪声条件下提高运动预测性能。然而,在跟踪噪声的情况下,如果没有彻底研究,它可能会影响整体性能。因此,我们应该在开发和测试运动/跟踪模块时注意到噪音,或者他们应该考虑跟踪自由替代品。
translated by 谷歌翻译