基于深度学习的组织病理学图像分类是帮助医生提高癌症诊断的准确性和迅速性的关键技术。然而,在复杂的手动注释过程中,嘈杂的标签通常是不可避免的,因此误导了分类模型的培训。在这项工作中,我们介绍了一种用于组织病理学图像分类的新型硬样本感知噪声稳健学习方法。为了区分来自有害嘈杂的内容漏洞,我们通过使用样本培训历史来构建一个简单/硬/噪声(EHN)检测模型。然后,我们将EHN集成到自动训练架构中,通过逐渐校正降低噪声速率。通过获得的几乎干净的数据集,我们进一步提出了一种噪声抑制和硬增强(NSHE)方案来训练噪声鲁棒模型。与以前的作品相比,我们的方法可以节省更多清洁样本,并且可以直接应用于实际嘈杂的数据集场景,而无需使用清洁子集。实验结果表明,该方案在合成和现实世界嘈杂的数据集中优于当前最先进的方法。源代码和数据可在https://github.com/bupt-ai-cz/hsa-nrl/处获得。
translated by 谷歌翻译
不完美的标签在现实世界数据集中无处不在,严重损害了模型性能。几个最近处理嘈杂标签的有效方法有两个关键步骤:1)将样品分开通过培训丢失,2)使用半监控方法在错误标记的集合中生成样本的伪标签。然而,由于硬样品和噪声之间的类似损失分布,目前的方法总是损害信息性的硬样品。在本文中,我们提出了PGDF(先前引导的去噪框架),通过生成样本的先验知识来学习深层模型来抑制噪声的新框架,这被集成到分割样本步骤和半监督步骤中。我们的框架可以将更多信息性硬清洁样本保存到干净标记的集合中。此外,我们的框架还通过抑制当前伪标签生成方案中的噪声来促进半监控步骤期间伪标签的质量。为了进一步增强硬样品,我们在训练期间在干净的标记集合中重新重量样品。我们使用基于CiFar-10和CiFar-100的合成数据集以及现实世界数据集WebVision和服装1M进行了评估了我们的方法。结果表明了最先进的方法的大量改进。
translated by 谷歌翻译
Annotating the dataset with high-quality labels is crucial for performance of deep network, but in real world scenarios, the labels are often contaminated by noise. To address this, some methods were proposed to automatically split clean and noisy labels, and learn a semi-supervised learner in a Learning with Noisy Labels (LNL) framework. However, they leverage a handcrafted module for clean-noisy label splitting, which induces a confirmation bias in the semi-supervised learning phase and limits the performance. In this paper, we for the first time present a learnable module for clean-noisy label splitting, dubbed SplitNet, and a novel LNL framework which complementarily trains the SplitNet and main network for the LNL task. We propose to use a dynamic threshold based on a split confidence by SplitNet to better optimize semi-supervised learner. To enhance SplitNet training, we also present a risk hedging method. Our proposed method performs at a state-of-the-art level especially in high noise ratio settings on various LNL benchmarks.
translated by 谷歌翻译
带有嘈杂标签的训练深神经网络(DNN)实际上是具有挑战性的,因为不准确的标签严重降低了DNN的概括能力。以前的努力倾向于通过识别带有粗糙的小损失标准来减轻嘈杂标签的干扰的嘈杂数据来处理统一的denoising流中的零件或完整数据,而忽略了嘈杂样本的困难是不同的,因此是刚性和统一的。数据选择管道无法很好地解决此问题。在本文中,我们首先提出了一种称为CREMA的粗到精细的稳健学习方法,以分裂和串扰的方式处理嘈杂的数据。在粗糙水平中,干净和嘈杂的集合首先从统计意义上就可信度分开。由于实际上不可能正确对所有嘈杂样本进行分类,因此我们通过对每个样本的可信度进行建模来进一步处理它们。具体而言,对于清洁集,我们故意设计了一种基于内存的调制方案,以动态调整每个样本在训练过程中的历史可信度顺序方面的贡献,从而减轻了错误地分组为清洁集中的嘈杂样本的效果。同时,对于分类为嘈杂集的样品,提出了选择性标签更新策略,以纠正嘈杂的标签,同时减轻校正错误的问题。广泛的实验是基于不同方式的基准,包括图像分类(CIFAR,Clothing1M等)和文本识别(IMDB),具有合成或自然语义噪声,表明CREMA的优势和普遍性。
translated by 谷歌翻译
样品选择是减轻标签噪声在鲁棒学习中的影响的有效策略。典型的策略通常应用小损失标准来识别干净的样品。但是,这些样本位于决策边界周围,通常会与嘈杂的例子纠缠在一起,这将被此标准丢弃,从而导致概括性能的严重退化。在本文中,我们提出了一种新颖的选择策略,\ textbf {s} elf- \ textbf {f} il \ textbf {t} ering(sft),它利用历史预测中嘈杂的示例的波动来过滤它们,可以过滤它们,这可以是可以过滤的。避免在边界示例中的小损失标准的选择偏置。具体来说,我们介绍了一个存储库模块,该模块存储了每个示例的历史预测,并动态更新以支持随后的学习迭代的选择。此外,为了减少SFT样本选择偏置的累积误差,我们设计了一个正规化术语来惩罚自信的输出分布。通过通过此术语增加错误分类类别的重量,损失函数在轻度条件下标记噪声是可靠的。我们对具有变化噪声类型的三个基准测试并实现了新的最先进的实验。消融研究和进一步分析验证了SFT在健壮学习中选择样本的优点。
translated by 谷歌翻译
Deep Learning with noisy labels is a practically challenging problem in weakly supervised learning. The stateof-the-art approaches "Decoupling" and "Co-teaching+" claim that the "disagreement" strategy is crucial for alleviating the problem of learning with noisy labels. In this paper, we start from a different perspective and propose a robust learning paradigm called JoCoR, which aims to reduce the diversity of two networks during training. Specifically, we first use two networks to make predictions on the same mini-batch data and calculate a joint loss with Co-Regularization for each training example. Then we select small-loss examples to update the parameters of both two networks simultaneously. Trained by the joint loss, these two networks would be more and more similar due to the effect of Co-Regularization. Extensive experimental results on corrupted data from benchmark datasets including MNIST, CIFAR-10, CIFAR-100 and Clothing1M demonstrate that JoCoR is superior to many state-of-the-art approaches for learning with noisy labels.
translated by 谷歌翻译
使用嘈杂标签(LNL)学习旨在设计策略来通过减轻模型过度适应嘈杂标签的影响来提高模型性能和概括。 LNL的主要成功在于从大量嘈杂数据中识别尽可能多的干净样品,同时纠正错误分配的嘈杂标签。最近的进步采用了单个样品的预测标签分布来执行噪声验证和嘈杂的标签校正,很容易产生确认偏差。为了减轻此问题,我们提出了邻里集体估计,其中通过将其与其功能空间最近的邻居进行对比,重新估计了候选样本的预测性可靠性。具体而言,我们的方法分为两个步骤:1)邻域集体噪声验证,将所有训练样品分为干净或嘈杂的子集,2)邻里集体标签校正到Relabel嘈杂样品,然后使用辅助技术来帮助进一步的模型优化。 。在四个常用基准数据集(即CIFAR-10,CIFAR-100,Clothing-1M和WebVision-1.0)上进行了广泛的实验,这表明我们提出的方法非常优于最先进的方法。
translated by 谷歌翻译
Deep neural networks are known to be annotation-hungry. Numerous efforts have been devoted to reducing the annotation cost when learning with deep networks. Two prominent directions include learning with noisy labels and semi-supervised learning by exploiting unlabeled data. In this work, we propose DivideMix, a novel framework for learning with noisy labels by leveraging semi-supervised learning techniques. In particular, DivideMix models the per-sample loss distribution with a mixture model to dynamically divide the training data into a labeled set with clean samples and an unlabeled set with noisy samples, and trains the model on both the labeled and unlabeled data in a semi-supervised manner. To avoid confirmation bias, we simultaneously train two diverged networks where each network uses the dataset division from the other network. During the semi-supervised training phase, we improve the MixMatch strategy by performing label co-refinement and label co-guessing on labeled and unlabeled samples, respectively. Experiments on multiple benchmark datasets demonstrate substantial improvements over state-of-the-art methods. Code is available at https://github.com/LiJunnan1992/DivideMix.
translated by 谷歌翻译
We approach the problem of improving robustness of deep learning algorithms in the presence of label noise. Building upon existing label correction and co-teaching methods, we propose a novel training procedure to mitigate the memorization of noisy labels, called CrossSplit, which uses a pair of neural networks trained on two disjoint parts of the dataset. CrossSplit combines two main ingredients: (i) Cross-split label correction. The idea is that, since the model trained on one part of the data cannot memorize example-label pairs from the other part, the training labels presented to each network can be smoothly adjusted by using the predictions of its peer network; (ii) Cross-split semi-supervised training. A network trained on one part of the data also uses the unlabeled inputs of the other part. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet and mini-WebVision datasets demonstrate that our method can outperform the current state-of-the-art up to 90% noise ratio.
translated by 谷歌翻译
自数据注释(尤其是对于大型数据集)以来,使用嘈杂的标签学习引起了很大的研究兴趣,这可能不可避免地不可避免。最近的方法通过将培训样本分为清洁和嘈杂的集合来求助于半监督的学习问题。然而,这种范式在重标签噪声下容易出现重大变性,因为干净样品的数量太小,无法进行常规方法。在本文中,我们介绍了一个新颖的框架,称为LC-Booster,以在极端噪音下明确处理学习。 LC-Booster的核心思想是将标签校正纳入样品选择中,以便可以通过可靠的标签校正来培训更纯化的样品,从而减轻确认偏差。实验表明,LC-Booster在几个嘈杂标签的基准测试中提高了最先进的结果,包括CIFAR-10,CIFAR-100,CLASTINGING 1M和WEBVISION。值得注意的是,在极端的90 \%噪声比下,LC-Booster在CIFAR-10和CIFAR-100上获得了92.9 \%和48.4 \%的精度,超过了最终方法,较大的边距就超过了最终方法。
translated by 谷歌翻译
在缺少标签(MLML)的情况下,多标签学习是一个具有挑战性的问题。现有方法主要关注网络结构或培训方案的设计,这提高了实现的复杂性。这项工作旨在满足MLML中的损失函数的潜力,而不增加程序和复杂性。为此,我们通过鲁棒损失设计提出了两种简单但有效的方法,基于观察到模型可以在高精度训练期间识别丢失的标签。首先是对底层的良好损失,即山损,重量底部以山的形状重量否定,以减轻虚假底片的效果。第二个是自定步损耗校正(SPLC)方法,其利用缺失标签的近似分布下的最大似然标准导出的丢失。在各种多标签图像分类数据集上的综合实验表明,我们的方法可以显着提高MLML的性能,并在MLML中实现新的最先进的损失函数。
translated by 谷歌翻译
嘈杂的标签损坏了深网络的性能。为了稳健的学习,突出的两级管道在消除可能的不正确标签和半监督培训之间交替。然而,丢弃观察到的标签的部分可能导致信息丢失,尤其是当腐败不是完全随机的时,例如依赖类或实例依赖。此外,从代表性两级方法Dividemix的训练动态,我们确定了确认偏置的统治:伪标签未能纠正相当大量的嘈杂标签,因此累积误差。为了充分利用观察到的标签和减轻错误的校正,我们提出了强大的标签翻新(鲁棒LR)-a新的混合方法,该方法集成了伪标签和置信度估计技术来翻新嘈杂的标签。我们表明我们的方法成功减轻了标签噪声和确认偏差的损害。结果,它跨数据集和噪声类型实现最先进的结果。例如,强大的LR在真实世界嘈杂的数据集网络VIVION上以前最好的绝对高度提高了4.5%的绝对顶级精度改进。
translated by 谷歌翻译
While mislabeled or ambiguously-labeled samples in the training set could negatively affect the performance of deep models, diagnosing the dataset and identifying mislabeled samples helps to improve the generalization power. Training dynamics, i.e., the traces left by iterations of optimization algorithms, have recently been proved to be effective to localize mislabeled samples with hand-crafted features. In this paper, beyond manually designed features, we introduce a novel learning-based solution, leveraging a noise detector, instanced by an LSTM network, which learns to predict whether a sample was mislabeled using the raw training dynamics as input. Specifically, the proposed method trains the noise detector in a supervised manner using the dataset with synthesized label noises and can adapt to various datasets (either naturally or synthesized label-noised) without retraining. We conduct extensive experiments to evaluate the proposed method. We train the noise detector based on the synthesized label-noised CIFAR dataset and test such noise detector on Tiny ImageNet, CUB-200, Caltech-256, WebVision and Clothing1M. Results show that the proposed method precisely detects mislabeled samples on various datasets without further adaptation, and outperforms state-of-the-art methods. Besides, more experiments demonstrate that the mislabel identification can guide a label correction, namely data debugging, providing orthogonal improvements of algorithm-centric state-of-the-art techniques from the data aspect.
translated by 谷歌翻译
深度学习在大量大数据的帮助下取得了众多域中的显着成功。然而,由于许多真实情景中缺乏高质量标签,数据标签的质量是一个问题。由于嘈杂的标签严重降低了深度神经网络的泛化表现,从嘈杂的标签(强大的培训)学习是在现代深度学习应用中成为一项重要任务。在本调查中,我们首先从监督的学习角度描述了与标签噪声学习的问题。接下来,我们提供62项最先进的培训方法的全面审查,所有这些培训方法都按照其方法论差异分为五个群体,其次是用于评估其优越性的六种性质的系统比较。随后,我们对噪声速率估计进行深入分析,并总结了通常使用的评估方法,包括公共噪声数据集和评估度量。最后,我们提出了几个有前途的研究方向,可以作为未来研究的指导。所有内容将在https://github.com/songhwanjun/awesome-noisy-labels提供。
translated by 谷歌翻译
最近关于使用嘈杂标签的学习的研究通过利用小型干净数据集来显示出色的性能。特别是,基于模型不可知的元学习的标签校正方法进一步提高了性能,通过纠正了嘈杂的标签。但是,标签错误矫予没有保障措施,导致不可避免的性能下降。此外,每个训练步骤都需要至少三个背部传播,显着减慢训练速度。为了缓解这些问题,我们提出了一种强大而有效的方法,可以在飞行中学习标签转换矩阵。采用转换矩阵使分类器对所有校正样本持怀疑态度,这减轻了错误的错误问题。我们还介绍了一个双头架构,以便在单个反向传播中有效地估计标签转换矩阵,使得估计的矩阵紧密地遵循由标签校正引起的移位噪声分布。广泛的实验表明,我们的方法在训练效率方面表现出比现有方法相当或更好的准确性。
translated by 谷歌翻译
深度神经网络模型对有限的标签噪声非常强大,但是它们在高噪声率问题中记住嘈杂标签的能力仍然是一个空旷的问题。最具竞争力的嘈杂标签学习算法依赖于一个2阶段的过程,其中包括无监督的学习,将培训样本分类为清洁或嘈杂,然后是半监督的学习,将经验仿生风险(EVR)最小化,该学习使用标记的集合制成的集合。样品被归类为干净,并提供了一个未标记的样品,该样品被分类为嘈杂。在本文中,我们假设这种2阶段嘈杂标签的学习方法的概括取决于无监督分类器的精度以及训练设置的大小以最大程度地减少EVR。我们从经验上验证了这两个假设,并提出了新的2阶段嘈杂标签训练算法longRemix。我们在嘈杂的标签基准CIFAR-10,CIFAR-100,Webvision,Clotsing1m和Food101-N上测试Longremix。结果表明,我们的Longremix比竞争方法更好,尤其是在高标签噪声问题中。此外,我们的方法在大多数数据集中都能达到最先进的性能。该代码可在https://github.com/filipe-research/longremix上获得。
translated by 谷歌翻译
深度学习在许多领域取得了许多显着的成就,但数据集中有嘈杂的标签。使用嘈杂的标签方法共同教学和共同教学的最先进的学习+通过双网络之间的相互信息面对嘈杂的标签。但是,双网络始终倾向于收敛,这会削弱双网机制以抵抗嘈杂标签。在本文中,我们以端到端的方式提出了一个名为MLC的耐噪声框架。它通过不同的正则化来调整双网络,以确保机制的有效性。此外,我们根据双网络之间的协议纠正标签分布。提出的方法可以利用嘈杂的数据来提高网络的准确性,概括和鲁棒性。我们在模拟嘈杂的数据集MNIST,CIFAR-10和现实世界嘈杂的数据集服装上测试了提出的方法。1M。实验结果表明,我们的方法优于先前的最新方法。此外,我们的方法是无网络的,因此它适用于许多任务。我们的代码可以在https://github.com/jiarunliu/mlc上找到。
translated by 谷歌翻译
标签噪声显着降低了应用中深度模型的泛化能力。有效的策略和方法,\ Texit {例如}重新加权或损失校正,旨在在训练神经网络时缓解标签噪声的负面影响。这些现有的工作通常依赖于预指定的架构并手动调整附加的超参数。在本文中,我们提出了翘曲的概率推断(WARPI),以便在元学习情景中自适应地整理分类网络的培训程序。与确定性模型相比,WARPI通过学习摊销元网络来制定为分层概率模型,这可以解决样本模糊性,因此对严格的标签噪声更加坚固。与直接生成损耗的重量值的现有近似加权功能不同,我们的元网络被学习以估计从登录和标签的输入来估计整流向量,这具有利用躺在它们中的足够信息的能力。这提供了纠正分类网络的学习过程的有效方法,证明了泛化能力的显着提高。此外,可以将整流载体建模为潜在变量并学习元网络,可以无缝地集成到分类网络的SGD优化中。我们在嘈杂的标签上评估了四个强大学习基准的Warpi,并在变体噪声类型下实现了新的最先进的。广泛的研究和分析还展示了我们模型的有效性。
translated by 谷歌翻译
Learning with noisy label (LNL) is a classic problem that has been extensively studied for image tasks, but much less for video in the literature. A straightforward migration from images to videos without considering the properties of videos, such as computational cost and redundant information, is not a sound choice. In this paper, we propose two new strategies for video analysis with noisy labels: 1) A lightweight channel selection method dubbed as Channel Truncation for feature-based label noise detection. This method selects the most discriminative channels to split clean and noisy instances in each category; 2) A novel contrastive strategy dubbed as Noise Contrastive Learning, which constructs the relationship between clean and noisy instances to regularize model training. Experiments on three well-known benchmark datasets for video classification show that our proposed tru{\bf N}cat{\bf E}-split-contr{\bf A}s{\bf T} (NEAT) significantly outperforms the existing baselines. By reducing the dimension to 10\% of it, our method achieves over 0.4 noise detection F1-score and 5\% classification accuracy improvement on Mini-Kinetics dataset under severe noise (symmetric-80\%). Thanks to Noise Contrastive Learning, the average classification accuracy improvement on Mini-Kinetics and Sth-Sth-V1 is over 1.6\%.
translated by 谷歌翻译
Deep learning with noisy labels is practically challenging, as the capacity of deep models is so high that they can totally memorize these noisy labels sooner or later during training. Nonetheless, recent studies on the memorization effects of deep neural networks show that they would first memorize training data of clean labels and then those of noisy labels. Therefore in this paper, we propose a new deep learning paradigm called "Co-teaching" for combating with noisy labels. Namely, we train two deep neural networks simultaneously, and let them teach each other given every mini-batch: firstly, each network feeds forward all data and selects some data of possibly clean labels; secondly, two networks communicate with each other what data in this mini-batch should be used for training; finally, each network back propagates the data selected by its peer network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art methods in the robustness of trained deep models. * The first two authors (Bo Han and Quanming Yao) made equal contributions. The implementation is available at https://github.com/bhanML/Co-teaching.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译