In this work, we propose a family of novel quantum kernels, namely the Hierarchical Aligned Quantum Jensen-Shannon Kernels (HAQJSK), for un-attributed graphs. Different from most existing classical graph kernels, the proposed HAQJSK kernels can incorporate hierarchical aligned structure information between graphs and transform graphs of random sizes into fixed-sized aligned graph structures, i.e., the Hierarchical Transitive Aligned Adjacency Matrix of vertices and the Hierarchical Transitive Aligned Density Matrix of the Continuous-Time Quantum Walk (CTQW). For a pair of graphs to hand, the resulting HAQJSK kernels are defined by measuring the Quantum Jensen-Shannon Divergence (QJSD) between their transitive aligned graph structures. We show that the proposed HAQJSK kernels not only reflect richer intrinsic global graph characteristics in terms of the CTQW, but also address the drawback of neglecting structural correspondence information arising in most existing R-convolution kernels. Furthermore, unlike the previous Quantum Jensen-Shannon Kernels associated with the QJSD and the CTQW, the proposed HAQJSK kernels can simultaneously guarantee the properties of permutation invariant and positive definiteness, explaining the theoretical advantages of the HAQJSK kernels. Experiments indicate the effectiveness of the proposed kernels.
translated by 谷歌翻译
In this paper, we propose a novel graph kernel, namely the Quantum-based Entropic Subtree Kernel (QESK), for Graph Classification. To this end, we commence by computing the Average Mixing Matrix (AMM) of the Continuous-time Quantum Walk (CTQW) evolved on each graph structure. Moreover, we show how this AMM matrix can be employed to compute a series of entropic subtree representations associated with the classical Weisfeiler-Lehman (WL) algorithm. For a pair of graphs, the QESK kernel is defined by computing the exponentiation of the negative Euclidean distance between their entropic subtree representations, theoretically resulting in a positive definite graph kernel. We show that the proposed QESK kernel not only encapsulates complicated intrinsic quantum-based structural characteristics of graph structures through the CTQW, but also theoretically addresses the shortcoming of ignoring the effects of unshared substructures arising in state-of-the-art R-convolution graph kernels. Moreover, unlike the classical R-convolution kernels, the proposed QESK can discriminate the distinctions of isomorphic subtrees in terms of the global graph structures, theoretically explaining the effectiveness. Experiments indicate that the proposed QESK kernel can significantly outperform state-of-the-art graph kernels and graph deep learning methods for graph classification problems.
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
In this article, we propose a family of efficient kernels for large graphs with discrete node labels. Key to our method is a rapid feature extraction scheme based on the Weisfeiler-Lehman test of isomorphism on graphs. It maps the original graph to a sequence of graphs, whose node attributes capture topological and label information. A family of kernels can be defined based on this Weisfeiler-Lehman sequence of graphs, including a highly efficient kernel comparing subtree-like patterns. Its runtime scales only linearly in the number of edges of the graphs and the length of the Weisfeiler-Lehman graph sequence. In our experimental evaluation, our kernels outperform state-of-the-art graph kernels on several graph classification benchmark data sets in terms of accuracy and runtime. Our kernels open the door to large-scale applications of graph kernels in various disciplines such as computational biology and social network analysis.
translated by 谷歌翻译
这篇综述的目的是将读者介绍到图表内,以将其应用于化学信息学中的分类问题。图内核是使我们能够推断分子的化学特性的功能,可以帮助您完成诸如寻找适合药物设计的化合物等任务。内核方法的使用只是一种特殊的两种方式量化了图之间的相似性。我们将讨论限制在这种方法上,尽管近年来已经出现了流行的替代方法,但最著名的是图形神经网络。
translated by 谷歌翻译
特征提取是图分析中的重要任务。这些特征向量(称为图形描述符)用于基于下游矢量空间的图形分析模型。过去证明了这个想法,基于光谱的图形描述符提供了最新的分类准确性。但是,要计算有意义的描述符的已知算法不会扩展到大图,因为:(1)它们需要将整个图存储在内存中,并且(2)最终用户无法控制算法的运行时。在本文中,我们提出流算法以大约计算三个不同的图形描述符,以捕获图的基本结构。在边缘流上操作使我们避免将整个图存储在内存中,并控制样本大小使我们能够将算法的运行时间保持在所需的范围内。我们通过分析近似误差和分类精度来证明所提出的描述符的功效。我们的可扩展算法计算图形的描述符,并在几分钟之内具有数百万个边缘。此外,这些描述符得出的预测精度可与最新方法相当,但只能使用25%的记忆来计算。
translated by 谷歌翻译
Graph神经网络(GNN)最近已成为使用图的机器学习的主要范式。对GNNS的研究主要集中于消息传递神经网络(MPNNS)的家族。与同构的Weisfeiler-Leman(WL)测试类似,这些模型遵循迭代的邻域聚合过程以更新顶点表示,并通过汇总顶点表示来更新顶点图表。尽管非常成功,但在过去的几年中,对MPNN进行了深入的研究。因此,需要新颖的体系结构,这将使该领域的研究能够脱离MPNN。在本文中,我们提出了一个新的图形神经网络模型,即所谓的$ \ pi $ -gnn,该模型学习了每个图的“软”排列(即双随机)矩阵,从而将所有图形投影到一个共同的矢量空间中。学到的矩阵在输入图的顶点上强加了“软”顺序,并基于此顺序,将邻接矩阵映射到向量中。这些向量可以被送入完全连接或卷积的层,以应对监督的学习任务。在大图的情况下,为了使模型在运行时间和记忆方面更有效,我们进一步放松了双随机矩阵,以使其排列随机矩阵。我们从经验上评估了图形分类和图形回归数据集的模型,并表明它与最新模型达到了性能竞争。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
Data mining algorithms are facing the challenge to deal with an increasing number of complex objects. For graph data, a whole toolbox of data mining algorithms becomes available by defining a kernel function on instances of graphs. Graph kernels based on walks, subtrees and cycles in graphs have been proposed so far. As a general problem, these kernels are either computationally expensive or limited in their expressiveness. We try to overcome this problem by defining expressive graph kernels which are based on paths. As the computation of all paths and longest paths in a graph is NP-hard, we propose graph kernels based on shortest paths. These kernels are computable in polynomial time, retain expressivity and are still positive definite. In experiments on classification of graph models of proteins, our shortest-path kernels show significantly higher classification accuracy than walk-based kernels.
translated by 谷歌翻译
即使在数十年的量子计算开发之后,通常在经典同行中具有指数加速的通常有用量子算法的示例是稀缺的。线性代数定位量子机学习(QML)的量子算法中的最新进展作为这种有用的指数改进的潜在来源。然而,在一个意想不到的发展中,最近一系列的“追逐化”结果同样迅速消除了几个QML算法的指数加速度的承诺。这提出了关键问题是否是其他线性代数QML算法的指数加速度持续存在。在本文中,我们通过该镜头研究了Lloyd,Garnerone和Zanardi的拓扑数据分析算法后面的量子算法方法。我们提供了证据表明,该算法解决的问题通过表明其自然概括与模拟一个清洁量子位模型很难地难以进行棘手的 - 这被广泛认为需要在经典计算机上需要超时时间 - 并且非常可能免疫追逐。基于此结果,我们为等级估计和复杂网络分析等问题提供了许多新的量子算法,以及其经典侵害性的复杂性 - 理论上。此外,我们分析了近期实现的所提出的量子算法的适用性。我们的结果为全面吹嘘和限制的量子计算机提供了许多有用的应用程序,具有古典方法的保证指数加速,恢复了线性代数QML的一些潜力,以成为量子计算的杀手应用之一。
translated by 谷歌翻译
图形内核是历史上最广泛使用的图形分类任务的技术。然而,由于图的手工制作的组合特征,这些方法具有有限的性能。近年来,由于其性能卓越,图形神经网络(GNNS)已成为与下游图形相关任务的最先进的方法。大多数GNN基于消息传递神经网络(MPNN)框架。然而,最近的研究表明,MPNN不能超过Weisfeiler-Lehman(WL)算法在图形同构术中的力量。为了解决现有图形内核和GNN方法的限制,在本文中,我们提出了一种新的GNN框架,称为\ Texit {内核图形神经网络}(Kernnns),该框架将图形内核集成到GNN的消息传递过程中。通过卷积神经网络(CNNS)中的卷积滤波器的启发,KERGNNS采用可训练的隐藏图作为绘图过滤器,该绘图过滤器与子图组合以使用图形内核更新节点嵌入式。此外,我们表明MPNN可以被视为Kergnns的特殊情况。我们将Kergnns应用于多个与图形相关的任务,并使用交叉验证来与基准进行公平比较。我们表明,与现有的现有方法相比,我们的方法达到了竞争性能,证明了增加GNN的表现能力的可能性。我们还表明,KERGNNS中的训练有素的图形过滤器可以揭示数据集的本地图形结构,与传统GNN模型相比,显着提高了模型解释性。
translated by 谷歌翻译
Deep graph kernels
分类:
In this paper, we present Deep Graph Kernels, a unified framework to learn latent representations of sub-structures for graphs, inspired by latest advancements in language modeling and deep learning. Our framework leverages the dependency information between sub-structures by learning their latent representations. We demonstrate instances of our framework on three popular graph kernels, namely Graphlet kernels, Weisfeiler-Lehman subtree kernels, and Shortest-Path graph kernels. Our experiments on several benchmark datasets show that Deep Graph Kernels achieve significant improvements in classification accuracy over state-of-the-art graph kernels.
translated by 谷歌翻译
作为建模复杂关系的强大工具,HyperGraphs从图表学习社区中获得了流行。但是,深度刻画学习中的常用框架专注于具有边缘独立的顶点权重(EIVW)的超图,而无需考虑具有具有更多建模功率的边缘依赖性顶点权重(EDVWS)的超图。为了弥补这一点,我们提出了一般的超图光谱卷积(GHSC),这是一个通用学习框架,不仅可以处理EDVW和EIVW HyperGraphs,而且更重要的是,理论上可以明确地利用现有强大的图形卷积神经网络(GCNN)明确说明,从而很大程度上可以释放。超图神经网络的设计。在此框架中,给定的无向GCNN的图形拉普拉斯被统一的HyperGraph Laplacian替换,该统一的HyperGraph Laplacian通过将我们所定义的广义超透明牌与简单的无向图等同起来,从随机的步行角度将顶点权重信息替换。来自各个领域的广泛实验,包括社交网络分析,视觉目标分类和蛋白质学习,证明了拟议框架的最新性能。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
Numerous important problems can be framed as learning from graph data. We propose a framework for learning convolutional neural networks for arbitrary graphs. These graphs may be undirected, directed, and with both discrete and continuous node and edge attributes. Analogous to image-based convolutional networks that operate on locally connected regions of the input, we present a general approach to extracting locally connected regions from graphs. Using established benchmark data sets, we demonstrate that the learned feature representations are competitive with state of the art graph kernels and that their computation is highly efficient.
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogues to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting, and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.
translated by 谷歌翻译
图表神经网络(GNN)和消息通过神经网络(MPNNS)被证明是在许多应用中的子图结构中表达的。异构图中的一些应用需要明确的边缘建模,例如子图同样计数和匹配。但是,现有的消息传递机制在理论上并不良好设计。在本文中,我们从特定的边缘到顶点变换开始,利用边缘到顶点双图中的同义性属性。我们证明,搜索原始图中的同构相当于在其双图上搜索。基于该观察,我们提出了通过神经网络(DMPNNS)的双信息以异步方式增强子图同样计数和匹配以及无监督的节点分类。广泛的实验通过在合成和真实异构图中结合节点和边缘表示学习来证明DMPNN的稳健性能。代码可在https://github.com/hkust-knowcomp/dualmessagepass上获得。
translated by 谷歌翻译
图表神经网络(GNNS)最近提出了用于处理图形结构数据的神经网络结构。由于他们所采用的邻国聚合策略,现有的GNNS专注于捕获节点级信息并忽略高级信息。因此,现有的GNN受到本地置换不变性(LPI)问题引起的代表性限制。为了克服这些限制并丰富GNN捕获的特征,我们提出了一种新的GNN框架,称为两级GNN(TL-GNN)。这与节点级信息合并子图级信息。此外,我们提供了对LPI问题的数学分析,这表明子图级信息有利于克服与LPI相关的问题。还提出了一种基于动态编程算法的子图计数方法,并且该具有时间复杂度是O(n ^ 3),n是图的节点的数量。实验表明,TL-GNN优于现有的GNN,实现了最先进的性能。
translated by 谷歌翻译
随着图表和图表学习的开发,已经提出了许多优越的方法来处理图形结构学习的可扩展性和过度厚度问题。但是,大多数策略都是基于实践经验而不是理论分析而设计的。在本文中,我们使用连接到所有现有顶点的特定虚拟节点,而不会影响原始顶点和边缘属性。我们进一步证明,这种虚拟节点可以帮助构建有效的单态边缘到vertex变换,并呈现呈呈倒数,以恢复原始图。这也表明,添加虚拟节点可以保留本地和全局结构,以更好地图表表示。我们扩展了具有虚拟节点的图形内核和图形神经网络,并在图形分类和子图同构匹配任务上进行实验。经验结果表明,以虚拟节点为输入的图表显着增强了图形结构学习,并且使用其边缘到vertex图也可以实现相似的结果。我们还讨论了神经网络中假人的表达能力的增长。
translated by 谷歌翻译