学习细粒度的运动是机器人技术中最具挑战性的主题之一。这尤其是机器人手。机器人的手语获取或更具体地说,机器人中的手指手语获取可以被视为这种挑战的特定实例。在本文中,我们提出了一种从视频示例中学习灵巧的运动模仿的方法,而无需使用任何其他信息。我们为每个关节构建一个机器人手的乌尔德FF模型。通过利用预先训练的深视力模型,我们从RGB视频中提取手的3D姿势。然后,使用最新的强化学习算法进行运动模仿(即,近端政策优化),我们训练一项政策,以重现从演示中提取的运动。我们确定最佳的超参数集以基于参考运动执行模仿。此外,我们演示了我们的方法能够概括超过6个不同的手指字母的能力。
translated by 谷歌翻译
机器人将机器人的无缝集成到人类环境需要机器人来学习如何使用现有的人类工具。学习工具操纵技能的目前方法主要依赖于目标机器人环境中提供的专家演示,例如,通过手动引导机器人操纵器或通过远程操作。在这项工作中,我们介绍了一种自动化方法,取代了一个专家演示,用YouTube视频来学习工具操纵策略。主要贡献是双重的。首先,我们设计一个对齐过程,使模拟环境与视频中观察到的真实世界。这是作为优化问题,找到刀具轨迹的空间对齐,以最大化环境给出的稀疏目标奖励。其次,我们描述了一种专注于工具的轨迹而不是人类的运动的模仿学习方法。为此,我们将加强学习与优化过程相结合,以基于对准环境中的工具运动来找到控制策略和机器人的放置。我们展示了仿真中的铲子,镰刀和锤子工具的建议方法,并展示了训练有素的政策对真正的弗兰卡·埃米卡熊猫机器人示范的卫生政策的有效性。
translated by 谷歌翻译
虽然对理解计算机视觉中的手对象交互进行了重大进展,但机器人执行复杂的灵巧操纵仍然非常具有挑战性。在本文中,我们提出了一种新的平台和管道DEXMV(来自视频的Dexerous操纵)以进行模仿学习。我们设计了一个平台:(i)具有多指机器人手和(ii)计算机视觉系统的复杂灵巧操纵任务的仿真系统,以记录进行相同任务的人类手的大规模示范。在我们的小说管道中,我们从视频中提取3D手和对象姿势,并提出了一种新颖的演示翻译方法,将人类运动转换为机器人示范。然后,我们将多个仿制学习算法与演示进行应用。我们表明,示威活动确实可以通过大幅度提高机器人学习,并解决独自增强学习无法解决的复杂任务。具有视频的项目页面:https://yzqin.github.io/dexmv
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
Figure 1: A five-fingered humanoid hand trained with reinforcement learning manipulating a block from an initial configuration to a goal configuration using vision for sensing.
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
学习敏捷技能是机器人技术的主要挑战之一。为此,加强学习方法取得了令人印象深刻的结果。这些方法需要根据奖励功能或可以在模拟中查询的专家来提供明确的任务信息,以提供目标控制输出,从而限制其适用性。在这项工作中,我们提出了一种生成的对抗方法,用于从部分和潜在的物理不兼容的演示中推断出奖励功能,以成功地获得参考或专家演示的成功技能。此外,我们表明,通过使用Wasserstein gan公式和从以粗糙和部分信息为输入的示范中进行过渡,我们能够提取强大的策略并能够模仿证明的行为。最后,在一个名为Solo 8的敏捷四倍的机器人上测试了所获得的技能,例如后空飞弹,并对手持人类示范的忠实复制进行了测试。
translated by 谷歌翻译
我们提出了一种对象感知的3D自我监测姿势估计方法,其紧密地集成了运动学建模,动力学建模和场景对象信息。与使用两种组件的现有运动学或基于动态的方法不同,我们通过动态调节培训协同两种方法。在每个时间步骤中,用于使用视频证据和仿真状态提供目标姿势的运动模型。然后,预先注释的动力学模型试图模拟物理模拟器中的运动姿势。通过比较由动态模型对动态模型产生的姿势指示的姿势,我们可以使用它们的未对准来进一步改善运动模型。通过在场景中的6DOF姿势(例如,椅子,盒子)中,我们首次展示了使用单个可佩戴相机估计物理合理的3D人体相互作用的能力。我们在受控实验室设置和现实世界场景中评估我们的Egentric姿势估计方法。
translated by 谷歌翻译
自动设计虚拟人和类人动物在帮助游戏,电影和机器人中的角色创作过程中具有巨大的潜力。在某些情况下,角色创建者可能希望设计针对某些动作(例如空手道踢和跑酷跳跃)定制的类人体身体。在这项工作中,我们提出了一个人形设计框架,以自动生成以预先指定的人体运动为条件的身体有效的人形体。首先,我们学习了一个广义的类人动物控制器,该控制器在大型人体运动数据集上进行了训练,该数据集具有多样化的人体运动和身体形状。其次,我们使用设计与控制框架来优化类人动物的物理属性,以找到可以更好地模仿预先指定的人类运动序列的身体设计。我们的方法利用预先训练的类人动物控制器和物理模拟作为指导,能够发现经过定制以执行预先指定的人类运动的新类型类人体设计。
translated by 谷歌翻译
实现人类水平的灵活性是机器人技术中的重要开放问题。但是,即使在婴儿级别,灵巧的手动操纵任务也是通过增强学习(RL)的挑战。困难在于高度的自由度和异质因素(例如手指关节)之间所需的合作。在这项研究中,我们提出了双人灵感手基准(BI-DEXHANDS),这是一种模拟器,涉及两只灵巧的手,其中包含数十只双人操纵任务和数千个目标对象。具体而言,根据认知科学文献,BI-DEXHANDS中的任务旨在匹配不同级别的人类运动技能。我们在ISSAC体育馆里建造了Bi-Dexhands;这可以实现高效的RL培训,仅在一个NVIDIA RTX 3090中达到30,000+ fps。我们在不同的设置下为流行的RL算法提供了全面的基准;这包括单代理/多代理RL,离线RL,多任务RL和META RL。我们的结果表明,PPO类型的上车算法可以掌握简单的操纵任务,该任务等效到48个月的人类婴儿(例如,捕获飞行的物体,打开瓶子),而多代理RL可以进一步帮助掌握掌握需要熟练的双人合作的操作(例如,举起锅,堆叠块)。尽管每个任务都取得了成功,但在获得多个操纵技能方面,现有的RL算法无法在大多数多任务和少量学习设置中工作,这需要从RL社区进行更实质性的发展。我们的项目通过https://github.com/pku-marl/dexteroushands开放。
translated by 谷歌翻译
从任意堕落状态中起床是一种基本的人类技能。现有的学习这种技能的方法通常会产生高度动态和不稳定的起床动作,这不像人类的起床策略,或者基于跟踪记录的人类起床运动。在本文中,我们提出了一种使用强化学习的分阶段方法,而无需求助于运动捕获数据。该方法首先利用了强大的字符模型,从而有助于发现解决方案模式。然后,第二阶段学会了调整控制策略,以逐步与角色的较弱版本一起使用。最后,第三阶段学习控制政策,这些政策可以以较慢的速度重现较弱的起床动作。我们表明,在多个运行中,该方法可以发现各种各样的起床策略,并以各种速度执行它们。结果通常会产生采用最终站立策略的策略,这些策略是从所有初始状态中看到的恢复动作所共有的。但是,我们还发现了对俯卧和仰卧初始堕落状态的不同策略的政策。学识渊博的起床控制策略通常具有明显的静态稳定性,即,在起床运动过程中,它们可以在各个点停下来。我们进一步测试了新的限制场景的方法,例如在演员表中有一条腿和手臂。
translated by 谷歌翻译
我们为物理模拟字符进行了简单而直观的互动控制方法。我们的工作在生成的对抗网络(GAN)和加强学习时构建,并介绍了一个模仿学习框架,其中分类器的集合和仿制策略训练在给定预处理的参考剪辑中训练。分类器受过培训,以区分从模仿政策产生的运动中的参考运动,而策略是为了欺骗歧视者而获得奖励。使用我们的GaN的方法,可以单独培训多个电机控制策略以模仿不同的行为。在运行时,我们的系统可以响应用户提供的外部控制信号,并在不同策略之间交互式切换。与现有方法相比,我们所提出的方法具有以下有吸引力的特性:1)在不手动设计和微调奖励功能的情况下实现最先进的模仿性能; 2)直接控制字符,而无需明确地或隐含地通过相位状态跟踪任何目标参考姿势; 3)支持交互式策略切换,而无需任何运动生成或运动匹配机制。我们突出了我们在一系列模仿和互动控制任务中的方法的适用性,同时还证明了其抵御外部扰动以及恢复平衡的能力。总的来说,我们的方法产生高保真运动,运行时的运行时间低,并且可以轻松地集成到交互式应用程序和游戏中。
translated by 谷歌翻译
通过加强学习(RL)掌握机器人操纵技巧通常需要设计奖励功能。该地区的最新进展表明,使用稀疏奖励,即仅在成功完成任务时奖励代理,可能会导致更好的政策。但是,在这种情况下,国家行动空间探索更困难。最近的RL与稀疏奖励学习的方法已经为任务提供了高质量的人类演示,但这些可能是昂贵的,耗时甚至不可能获得的。在本文中,我们提出了一种不需要人类示范的新颖有效方法。我们观察到,每个机器人操纵任务都可以被视为涉及从被操纵对象的角度来看运动的任务,即,对象可以了解如何自己达到目标状态。为了利用这个想法,我们介绍了一个框架,最初使用现实物理模拟器获得对象运动策略。然后,此策略用于生成辅助奖励,称为模拟的机器人演示奖励(SLDRS),使我们能够学习机器人操纵策略。拟议的方法已在增加复杂性的13个任务中进行了评估,与替代算法相比,可以实现更高的成功率和更快的学习率。 SLDRS对多对象堆叠和非刚性物体操作等任务特别有益。
translated by 谷歌翻译
强化学习是机器人抓握的一种有前途的方法,因为它可以在困难的情况下学习有效的掌握和掌握政策。但是,由于问题的高维度,用精致的机器人手来实现类似人类的操纵能力是具有挑战性的。尽管可以采用奖励成型或专家示范等补救措施来克服这个问题,但它们通常导致过分简化和有偏见的政策。我们介绍了Dext-Gen,这是一种在稀疏奖励环境中灵巧抓握的强化学习框架,适用于各种抓手,并学习无偏见和复杂的政策。通过平滑方向表示实现了抓地力和物体的完全方向控制。我们的方法具有合理的培训时间,并提供了包括所需先验知识的选项。模拟实验证明了框架对不同方案的有效性和适应性。
translated by 谷歌翻译
人体运动的实时跟踪对于AR/VR中的互动和沉浸式体验至关重要。但是,有关人体的传感器数据非常有限,可以从独立的可穿戴设备(例如HMD(头部安装设备)或AR眼镜)获得。在这项工作中,我们提出了一个强化学习框架,该框架从HMD和两个控制器中获取稀疏信号,并模拟合理且身体上有效的全身运动。在训练过程中,使用高质量的全身运动作为密集的监督,一个简单的策略网络可以学会为角色,步行和慢跑的角色输出适当的扭矩,同时紧随输入信号。我们的结果表明,即使输入仅是HMD的6D变换,也没有对下半身进行任何观察到的地面真理的惊人相似的腿部运动。我们还表明,单一政策可以对各种运动风格,不同的身体尺寸和新颖的环境都有坚固的态度。
translated by 谷歌翻译
Reinforcement Learning (RL) has seen many recent successes for quadruped robot control. The imitation of reference motions provides a simple and powerful prior for guiding solutions towards desired solutions without the need for meticulous reward design. While much work uses motion capture data or hand-crafted trajectories as the reference motion, relatively little work has explored the use of reference motions coming from model-based trajectory optimization. In this work, we investigate several design considerations that arise with such a framework, as demonstrated through four dynamic behaviours: trot, front hop, 180 backflip, and biped stepping. These are trained in simulation and transferred to a physical Solo 8 quadruped robot without further adaptation. In particular, we explore the space of feed-forward designs afforded by the trajectory optimizer to understand its impact on RL learning efficiency and sim-to-real transfer. These findings contribute to the long standing goal of producing robot controllers that combine the interpretability and precision of model-based optimization with the robustness that model-free RL-based controllers offer.
translated by 谷歌翻译
近年来,商业上可用和负担得起的四足动物机器人激增,其中许多平台在研究和行业中都被积极使用。随着腿部机器人的可用性的增长,对这些机器人能够执行有用技能的控制器的需求也是如此。但是,大多数用于控制器开发的基于学习的框架都集中在培训机器人特定的控制器上,该过程需要为每个新机器人重复。在这项工作中,我们引入了一个用于训练四足机器人的广义运动(Genloco)控制器的框架。我们的框架合成了可以部署在具有相似形态的各种四足动物的机器人上的通用运动控制器。我们提出了一种简单但有效的形态随机化方法,该方法在程序上生成了一组训练的模拟机器人。我们表明,通过对这套模拟机器人进行训练,我们的模型获得了更多的通用控制策略,这些策略可以直接转移到具有多种形态的新型模拟和真实世界机器人中,在训练过程中未观察到。
translated by 谷歌翻译