从诸如蛋白质折叠或配体 - 受体结合如蛋白质 - 折叠或配体 - 受体结合等生物分子过程的长时间轨迹的低尺寸表示是基本的重要性和动力学模型,例如Markov建模,这些模型已经证明是有用的,用于描述这些系统的动力学。最近,引入了一种被称为vampnet的无监督机器学习技术,以以端到端的方式学习低维度表示和线性动态模型。 Vampnet基于Markov进程(VAMP)的变分方法,并依赖于神经网络来学习粗粒度的动态。在此贡献中,我们将Vampnet和图形神经网络组合生成端到端的框架,以从长时间的分子动力学轨迹有效地学习高级动态和亚稳态。该方法承载图形表示学习的优点,并使用图形消息传递操作来生成用于VAMPNET中使用的每个数据点以生成粗粒化表示的嵌入。这种类型的分子表示结果导致更高的分辨率和更可接定的Markov模型,而不是标准Vampnet,使得对生物分子过程更详细的动力学研究。我们的GraphVampNet方法也具有注意机制,以找到分类为不同亚稳态的重要残留物。
translated by 谷歌翻译
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
translated by 谷歌翻译
预测分子系统的结构和能量特性是分子模拟的基本任务之一,并且具有化学,生物学和医学的用例。在过去的十年中,机器学习算法的出现影响了各种任务的分子模拟,包括原子系统的财产预测。在本文中,我们提出了一种新的方法,用于将从简单分子系统获得的知识转移到更复杂的知识中,并具有明显的原子和自由度。特别是,我们专注于高自由能状态的分类。我们的方法依赖于(i)分子的新型超图表,编码所有相关信息来表征构象的势能,以及(ii)新的消息传递和汇总层来处理和对此类超图结构数据进行预测。尽管问题的复杂性,但我们的结果表明,从三丙氨酸转移到DECA-丙氨酸系统的转移学习中,AUC的AUC为0.92。此外,我们表明,相同的转移学习方法可以用无监督的方式分组,在具有相似的自由能值的簇中,deca-丙氨酸的各种二级结构。我们的研究代表了一个概念证明,即可以设计用于分子系统的可靠传输学习模型,为预测生物学相关系统的结构和能量性能的未开发途径铺平道路。
translated by 谷歌翻译
Graph neural networks have recently achieved great successes in predicting quantum mechanical properties of molecules. These models represent a molecule as a graph using only the distance between atoms (nodes). They do not, however, consider the spatial direction from one atom to another, despite directional information playing a central role in empirical potentials for molecules, e.g. in angular potentials. To alleviate this limitation we propose directional message passing, in which we embed the messages passed between atoms instead of the atoms themselves. Each message is associated with a direction in coordinate space. These directional message embeddings are rotationally equivariant since the associated directions rotate with the molecule. We propose a message passing scheme analogous to belief propagation, which uses the directional information by transforming messages based on the angle between them. Additionally, we use spherical Bessel functions and spherical harmonics to construct theoretically well-founded, orthogonal representations that achieve better performance than the currently prevalent Gaussian radial basis representations while using fewer than 1 /4 of the parameters. We leverage these innovations to construct the directional message passing neural network (DimeNet). DimeNet outperforms previous GNNs on average by 76 % on MD17 and by 31 % on QM9. Our implementation is available online. 1
translated by 谷歌翻译
蛋白质功能预测的最新进展利用了基于图的深度学习方法,以将蛋白质的结构和拓扑特征与其分子功能相关联。然而,体内蛋白质不是静态的,而是为功能目的改变构象的动态分子。在这里,我们通过在动态相关的残基对之间连接边缘,将正常模式分析应用于天然蛋白质构象和增强蛋白图。在Multilabel函数分类任务中,我们的方法基于此动态信息表示,演示了出色的性能增益。提出的图形神经网络(Prodar)提高了残基级注释的可解释性和普遍性,并鲁棒反映了蛋白质中的结构细微差别。我们通过比较HMTH1,硝基酚蛋白和SARS-COV-2受体结合结构域的类激活图来阐明图表中动态信息的重要性。我们的模型成功地学习了蛋白质的动态指纹,并指出了功能影响的残基,具有广泛的生物技术和药物应用的巨大潜力。
translated by 谷歌翻译
分子动力学(MD)模拟是各种科学领域的主力,但受到高计算成本的限制。基于学习的力场在加速AB-Initio MD模拟方面取得了重大进展,但对于许多需要长期MD仿真的现实世界应用程序仍然不够快。在本文中,我们采用了一种不同的机器学习方法,使用图形群集将物理系统粗糙化,并使用图形神经网络使用非常大的时间整合步骤对系统演变进行建模。一个新型的基于分数的GNN改进模块解决了长期模拟不稳定性的长期挑战。尽管仅接受了简短的MD轨迹数据训练,但我们学到的模拟器仍可以推广到看不见的新型系统,并比训练轨迹更长的时间。需要10-100 ns级的长时间动力学的属性可以在多个刻度级的速度上准确恢复,而不是经典的力场。我们证明了方法对两个现实的复杂系统的有效性:(1)隐式溶剂中的单链粗粒聚合物; (2)多组分锂离子聚合物电解质系统。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
粗粒(CG)分子模拟已成为研究全原子模拟无法访问的时间和长度尺度上分子过程的标准工具。参数化CG力场以匹配全原子模拟,主要依赖于力匹配或相对熵最小化,这些熵最小化分别需要来自具有全原子或CG分辨率的昂贵模拟中的许多样本。在这里,我们提出了流量匹配,这是一种针对CG力场的新训练方法,它通过利用正常流量(一种生成的深度学习方法)来结合两种方法的优势。流量匹配首先训练标准化流程以表示CG概率密度,这等同于最小化相对熵而无需迭代CG模拟。随后,该流量根据学习分布生成样品和力,以通过力匹配来训练所需的CG能量模型。即使不需要全部原子模拟的力,流程匹配就数据效率的数量级优于经典力匹配,并产生CG模型,可以捕获小蛋白质的折叠和展开过渡。
translated by 谷歌翻译
分子动力学(MD)仿真是一种强大的工具,用于了解物质的动态和结构。由于MD的分辨率是原子尺度,因此实现了使用飞秒集成的长时间模拟非常昂贵。在每个MD步骤中,执行许多可以学习和避免的冗余计算。这些冗余计算可以由像图形神经网络(GNN)的深度学习模型代替和建模。在这项工作中,我们开发了一个GNN加速分子动力学(GAMD)模型,实现了快速准确的力预测,并产生与经典MD模拟一致的轨迹。我们的研究结果表明,Gamd可以准确地预测两个典型的分子系统,Lennard-Jones(LJ)颗粒和水(LJ +静电)的动态。 GAMD的学习和推理是不可知论的,它可以在测试时间缩放到更大的系统。我们还进行了一项全面的基准测试,将GAMD的实施与生产级MD软件进行了比较,我们展示了GAMD在大规模模拟上对它们具有竞争力。
translated by 谷歌翻译
通过定向消息传递通过方向消息通过的图形神经网络最近在多个分子特性预测任务上设置了最先进的技术。然而,它们依赖于通常不可用的原子位置信息,并获得它通常非常昂贵甚至不可能。在本文中,我们提出了合成坐标,使得能够使用高级GNN而不需要真正的分子配置。我们提出了两个距离作为合成坐标:使用个性化PageRank的对称变体指定分子配置的粗糙范围和基于图的距离的距离界限。为了利用距离和角度信息,我们提出了一种将正常图形神经网络转换为定向MPNN的方法。我们表明,通过这种转变,我们可以将正常图形神经网络的误差减少55%在锌基准。我们还通过在SMP和DimeNet ++模型中纳入合成坐标,在锌和自由QM9上设定了最新技术。我们的实现可在线获取。
translated by 谷歌翻译
We consider the prediction of interfaces between proteins, a challenging problem with important applications in drug discovery and design, and examine the performance of existing and newly proposed spatial graph convolution operators for this task. By performing convolution over a local neighborhood of a node of interest, we are able to stack multiple layers of convolution and learn effective latent representations that integrate information across the graph that represent the three dimensional structure of a protein of interest. An architecture that combines the learned features across pairs of proteins is then used to classify pairs of amino acid residues as part of an interface or not. In our experiments, several graph convolution operators yielded accuracy that is better than the state-of-the-art SVM method in this task. † denotes equal contribution 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
分子模拟的粗粒度(CG)通过将选定的原子分组为伪珠并大幅加速模拟来简化粒子的表示。但是,这种CG程序会导致信息损失,从而使准确的背景映射,即从CG坐标恢复细粒度(FG)坐标,这是一个长期存在的挑战。受生成模型和e象网络的最新进展的启发,我们提出了一个新型模型,该模型严格嵌入了背态转换的重要概率性质和几何一致性要求。我们的模型将FG的不确定性编码为不变的潜在空间,并通过Equivariant卷积将其解码为FG几何形状。为了标准化该领域的评估,我们根据分子动力学轨迹提供了三个综合基准。实验表明,我们的方法始终恢复更现实的结构,并以显着的边距胜过现有的数据驱动方法。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
这项工作考虑了在属性关系图(ARG)上表示表示的任务。 ARG中的节点和边缘都与属性/功能相关联,允许ARG编码在实际应用中广泛观察到的丰富结构信息。现有的图形神经网络提供了有限的能力,可以在局部结构环境中捕获复杂的相互作用,从而阻碍他们利用ARG的表达能力。我们提出了Motif卷积模块(MCM),这是一种新的基于基线的图表表示技术,以更好地利用本地结构信息。处理连续边缘和节点功能的能力是MCM比现有基于基础图案的模型的优势之一。 MCM以无监督的方式构建了一个主题词汇,并部署了一种新型的主题卷积操作,以提取单个节点的局部结构上下文,然后将其用于通过多层perceptron学习高级节点表示,并在图神经网络中传递消息。与其他图形学习方法进行分类的合成图相比,我们的方法在捕获结构环境方面要好得多。我们还通过将其应用于几个分子基准来证明我们方法的性能和解释性优势。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have achieved remarkable performances for quantum mechanical problems. However, a graph convolution can only cover a localized region, and cannot capture long-range interactions of atoms. This behavior is contrary to theoretical interatomic potentials, which is a fundamental limitation of the spatial based GNNs. In this work, we propose a novel attention-based framework for molecular property prediction tasks. We represent a molecular conformation as a discrete atomic sequence combined by atom-atom distance attributes, named Geometry-aware Transformer (GeoT). In particular, we adopt a Transformer architecture, which has been widely used for sequential data. Our proposed model trains sequential representations of molecular graphs based on globally constructed attentions, maintaining all spatial arrangements of atom pairs. Our method does not suffer from cost intensive computations, such as angle calculations. The experimental results on several public benchmarks and visualization maps verified that keeping the long-range interatomic attributes can significantly improve the model predictability.
translated by 谷歌翻译
偶极矩是一个物理量,指示分子的极性,并通过反映成分原子的电性能和分子的几何特性来确定。大多数用于表示传统图神经网络方法中图表表示的嵌入方式将分子视为拓扑图,从而为识别几何信息的目标造成了重大障碍。与现有的嵌入涉及均值的嵌入不同,该嵌入适当地处理分子的3D结构不同,我们的拟议嵌入直接表达了偶极矩局部贡献的物理意义。我们表明,即使对于具有扩展几何形状的分子并捕获更多的原子相互作用信息,开发的模型甚至可以合理地工作,从而显着改善了预测结果,准确性与AB-Initio计算相当。
translated by 谷歌翻译
Applying deep learning concepts from image detection and graph theory has greatly advanced protein-ligand binding affinity prediction, a challenge with enormous ramifications for both drug discovery and protein engineering. We build upon these advances by designing a novel deep learning architecture consisting of a 3-dimensional convolutional neural network utilizing channel-wise attention and two graph convolutional networks utilizing attention-based aggregation of node features. HAC-Net (Hybrid Attention-Based Convolutional Neural Network) obtains state-of-the-art results on the PDBbind v.2016 core set, the most widely recognized benchmark in the field. We extensively assess the generalizability of our model using multiple train-test splits, each of which maximizes differences between either protein structures, protein sequences, or ligand extended-connectivity fingerprints. Furthermore, we perform 10-fold cross-validation with a similarity cutoff between SMILES strings of ligands in the training and test sets, and also evaluate the performance of HAC-Net on lower-quality data. We envision that this model can be extended to a broad range of supervised learning problems related to structure-based biomolecular property prediction. All of our software is available as open source at https://github.com/gregory-kyro/HAC-Net/.
translated by 谷歌翻译
在计算物理和化学中,增强的采样方法是必不可少的,由于采样问题,原子模拟无法详尽地对动态系统的高维配置空间进行采样。一类增强的抽样方法通过识别一些缓慢的自由度,称为集体变量(CVS)并增强沿这些CVS的采样来起作用。选择CVS来分析和驱动采样并不是微不足道的,并且通常依赖于物理和化学直觉。尽管使用流形学习通常会从标准模拟中直接估算CVS,但这种方法无法通过增强的采样模拟为低维流形提供映射,因为学到的歧管的几何形状和密度是有偏见的。在这里,我们解决了这个关键问题,并根据各向异性扩散图提供了一个普遍的重新加权框架,以考虑到流形学习,该框架考虑了学习数据集是从偏见的概率分布中采样的。我们考虑基于构建马尔可夫链的流形学习方法,描述了高维样品之间的过渡概率。我们表明,我们的框架恢复了偏置效应,从而产生了正确描述平衡密度的CV。这种进步可以直接从增强的采样模拟生成的数据中直接使用流形学习来构建低维CV。我们称我们的框架重新持续的流形学习。我们表明,它可以在来自标准和增强采样模拟的数据上的许多流形学习技术中使用。
translated by 谷歌翻译