In this paper we propose a pooling approach for convolutional information processing on graphs relying on the theory of graphons and limits of dense graph sequences. We present three methods that exploit the induced graphon representation of graphs and graph signals on partitions of [0, 1]2 in the graphon space. As a result we derive low dimensional representations of the convolutional operators, while a dimensionality reduction of the signals is achieved by simple local interpolation of functions in L2([0, 1]). We prove that those low dimensional representations constitute a convergent sequence of graphs and graph signals, respectively. The methods proposed and the theoretical guarantees that we provide show that the reduced graphs and signals inherit spectral-structural properties of the original quantities. We evaluate our approach with a set of numerical experiments performed on graph neural networks (GNNs) that rely on graphon pooling. We observe that graphon pooling performs significantly better than other approaches proposed in the literature when dimensionality reduction ratios between layers are large. We also observe that when graphon pooling is used we have, in general, less overfitting and lower computational cost.
translated by 谷歌翻译
在本文中,我们为基于非交换代数的代数神经网络(ALGNN)提供稳定性结果。 ALGNN是堆叠的分层结构,每个层都与代数信号模型(ASM)相关联,由代数,矢量空间和同态性。信号被建模为矢量空间的元素,过滤器是代数中的元素,而同态则可以实现过滤器作为混凝土操作员。我们研究了代数过滤器在非交换代数对同态扰动中的稳定性,并提供了保证稳定性的条件。我们表明,轮班运算符和偏移和扰动之间的换向性不会影响稳定体系结构的属性。这提供了一个问题,即转移不变性是否是保证稳定性的卷积体系结构的必要属性。此外,我们表明,尽管非交换代数中过滤器的频率响应在交换代数中与过滤器相对于过滤器表现出很大的差异,但它们的稳定过滤器的衍生物具有相似的行为。
translated by 谷歌翻译
在本文中,我们研究了考虑基础图的扰动的聚集图神经网络(ag-gnns)的稳定性。 Agg-gnn是一种混合体系结构,在图上定义了信息,但是在图形移位算子上进行了几次扩散后,在节点上的欧几里得CNN对其进行了处理。我们为与通用Agg-GNN关联的映射运算符得出稳定性界限,并指定了该操作员可以稳定变形的条件。我们证明稳定性边界是由在每个节点上作用的CNN的第一层中过滤器的属性定义的。此外,我们表明聚集的数量,滤波器的选择性和稳定性常数的大小之间存在密切的关系。我们还得出结论,在Agg-gnns中,映射运算符的选择性仅在CNN阶段的第一层中与过滤器的属性相关。这显示了相对于选择GNN的稳定性的实质性差异,其中所有层中过滤器的选择性受其稳定性的约束。我们提供了证实结果得出的结果的数值证据,测试了考虑不同幅度扰动的现实生活应用方案中的ag-gnn的行为。
translated by 谷歌翻译
图形神经网络(GNNS)是由图形卷积和叉指非线性组成的层组成的深度卷积架构。由于其不变性和稳定性属性,GNN在网络数据的学习陈述中被证明是成功的。但是,训练它们需要矩阵计算,这对于大图可能是昂贵的。为了解决这个限制,我们研究了GNN横跨图形转移的能力。我们考虑图形,这是加权和随机图形的图形限制和生成模型,以定义图形卷积和GNNS - Graphon卷曲和Graphon神经网络(WNNS)的限制对象 - 我们用作图形卷曲的生成模型和GNNS。我们表明,这些石墨源区和WNN可以通过图形滤波器和来自加权和随机图中的它们采样的GNN来近似。使用这些结果,我们将导出误差界限,用于跨越此类图形传输图形过滤器和GNN。这些界限表明,可转换性随着图尺寸的增加而增加,并且揭示了在GNN中的可转换性和光谱分辨率之间的折衷,其被点亮的非线性缓解。这些发现经验在电影推荐和分散机器人控制中的数值实验中进行了经验验证。
translated by 谷歌翻译
我们研究光谱图卷积神经网络(GCNN),其中过滤器被定义为通过功能计算的图形移位算子(GSO)的连续函数。光谱GCNN不是针对一个特定图的量身定制的,可以在不同的图之间传输。因此,研究GCNN的可传递性很重要:网络在代表相同现象的不同图上具有大致相同影响的能力。如果测试集中的图与训练集中的图形相同,则可传递性可确保在某些图上进行训练的GCNN概括。在本文中,我们考虑了基于Graphon分析的可转让性模型。图形是图形的极限对象,在图形范式中,如果两者都近似相同的图形,则两个图表示相同的现象。我们的主要贡献可以总结如下:1)我们证明,在近似于同一图形的图的图下,任何具有连续过滤器的固定GCNN都是可以转移的,2)我们证明了近似于未结合的图形换档运算符的图形,该图是在本文中定义的,和3)我们获得了非反应近似结果,证明了GCNN的线性稳定性。这扩展了当前的最新结果,这些结果显示了在近似界图子的图下显示多项式过滤器的渐近可传递性。
translated by 谷歌翻译
图卷积学习导致了各个领域的许多令人兴奋的发现。但是,在某些应用中,传统图不足以捕获数据的结构和复杂性。在这种情况下,多编码自然出现是可以嵌入复杂动力学的离散结构。在本文中,我们开发了有关多编码的卷积信息处理,并引入了卷积多编码神经网络(MGNN)。为了捕获每个多数边缘内外的信息传播的复杂动力学,我们正式化了一个卷积信号处理模型,从而定义了多格画上信号,过滤和频率表示的概念。利用该模型,我们开发了多个学习架构,包括采样程序以降低计算复杂性。引入的体系结构用于最佳无线资源分配和仇恨言语本地化任务,从而比传统的图形神经网络的性能提高了。
translated by 谷歌翻译
We introduce an architecture for processing signals supported on hypergraphs via graph neural networks (GNNs), which we call a Hyper-graph Expansion Neural Network (HENN), and provide the first bounds on the stability and transferability error of a hypergraph signal processing model. To do so, we provide a framework for bounding the stability and transferability error of GNNs across arbitrary graphs via spectral similarity. By bounding the difference between two graph shift operators (GSOs) in the positive semi-definite sense via their eigenvalue spectrum, we show that this error depends only on the properties of the GNN and the magnitude of spectral similarity of the GSOs. Moreover, we show that existing transferability results that assume the graphs are small perturbations of one another, or that the graphs are random and drawn from the same distribution or sampled from the same graphon can be recovered using our approach. Thus, both GNNs and our HENNs (trained using normalized Laplacians as graph shift operators) will be increasingly stable and transferable as the graphs become larger. Experimental results illustrate the importance of considering multiple graph representations in HENN, and show its superior performance when transferability is desired.
translated by 谷歌翻译
图形神经网络(GNNS)使用图形卷积来利用网络不向导并从网络数据中学习有意义的特征表示。但是,在大规模图中,卷积以高计算成本产生,导致可伸缩性限制。在本文中,我们考虑了学习图形神经网络(WNN)的问题 - GNN的极限对象 - 通过训练从Graphon采样的图形上,我们考虑了学习GragraN神经网络(WNN)的问题。在平滑性条件下,我们表明:(i)GNN和WNN上的学习步骤之间的预期距离随图形的尺寸渐近地降低,并且(ii)在一系列生长图上训练时,梯度下降遵循WNN的学习方向。受这些结果的启发,我们提出了一种新型算法,以学习大规模图的GNN,从中等数量的节点开始,在训练过程中依次增加了图的大小。该算法是在分散的控制问题上进一步基准的,在该问题下,它以降低的计算成本保留了与大规模对应物相当的性能。
translated by 谷歌翻译
随机图神经网络(SGNN)是信息处理体系结构,可从随机图中学习表示表示。 SGNN受到预期性能的培训,这不能保证围绕最佳期望的特定输出实现的偏差。为了克服这个问题,我们为SGNN提出了一个方差约束优化问题,平衡了预期的性能和随机偏差。通过使用梯度下降和梯度上升的双变量更新SGNN参数,进行了交替的原始双偶学习过程,该过程通过更新SGNN参数来解决问题。为了表征方差约束学习的明确效应,我们对SGNN输出方差进行理论分析,并确定随机鲁棒性和歧视能力之间的权衡。我们进一步分析了方差约束优化问题的二元性差距以及原始双重学习过程的融合行为。前者表示双重变换引起的最优性损失,后者是迭代算法的限制误差,这两者都保证了方差约束学习的性能。通过数值模拟,我们证实了我们的理论发现,并观察到具有可控标准偏差的强劲预期性能。
translated by 谷歌翻译
Although theoretical properties such as expressive power and over-smoothing of graph neural networks (GNN) have been extensively studied recently, its convergence property is a relatively new direction. In this paper, we investigate the convergence of one powerful GNN, Invariant Graph Network (IGN) over graphs sampled from graphons. We first prove the stability of linear layers for general $k$-IGN (of order $k$) based on a novel interpretation of linear equivariant layers. Building upon this result, we prove the convergence of $k$-IGN under the model of \citet{ruiz2020graphon}, where we access the edge weight but the convergence error is measured for graphon inputs. Under the more natural (and more challenging) setting of \citet{keriven2020convergence} where one can only access 0-1 adjacency matrix sampled according to edge probability, we first show a negative result that the convergence of any IGN is not possible. We then obtain the convergence of a subset of IGNs, denoted as IGN-small, after the edge probability estimation. We show that IGN-small still contains function class rich enough that can approximate spectral GNNs arbitrarily well. Lastly, we perform experiments on various graphon models to verify our statements.
translated by 谷歌翻译
散射变换是一种基于多层的小波的深度学习架构,其充当卷积神经网络的模型。最近,几种作品引入了非欧几里德设置的散射变换的概括,例如图形。我们的工作通过基于非常一般的非对称小波来引入图形的窗口和非窗口几何散射变换来构建这些结构。我们表明,这些不对称的图形散射变换具有许多与其对称对应的相同的理论保证。结果,所提出的结构统一并扩展了许多现有图散射架构的已知理论结果。在这样做时,这项工作有助于通过引入具有可提供稳定性和不变性保证的大型网络,帮助弥合几何散射和其他图形神经网络之间的差距。这些结果为未来的图形结构数据奠定了基础,对具有学习过滤器的图形结构数据,并且还可以证明具有理想的理论特性。
translated by 谷歌翻译
散射变换是一种基于小波的多层转换,最初是作为卷积神经网络(CNN)的模型引入的,它在我们对这些网络稳定性和不变性属性的理解中发挥了基础作用。随后,人们普遍兴趣将CNN的成功扩展到具有非欧盟结构的数据集,例如图形和歧管,从而导致了几何深度学习的新兴领域。为了提高我们对这个新领域中使用的体系结构的理解,几篇论文提出了对非欧几里得数据结构(如无方向的图形和紧凑的Riemannian歧管)的散射转换的概括。在本文中,我们介绍了一个通用的统一模型,用于测量空间上的几何散射。我们提出的框架包括以前的几何散射作品作为特殊情况,但也适用于更通用的设置,例如有向图,签名图和带边界的歧管。我们提出了一个新标准,该标准可以识别哪些有用表示应该不变的组,并表明该标准足以确保散射变换具有理想的稳定性和不变性属性。此外,我们考虑从随机采样未知歧管获得的有限度量空间。我们提出了两种构造数据驱动图的方法,在该图上相关的图形散射转换近似于基础歧管上的散射变换。此外,我们使用基于扩散图的方法来证明这些近似值之一的收敛速率的定量估计值,因为样品点的数量趋向于无穷大。最后,我们在球形图像,有向图和高维单细胞数据上展示了方法的实用性。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
我们介绍了一种新颖的谐波分析,用于在函数上定义的函数,随机步行操作员是基石。作为第一步,我们将随机步行操作员的一组特征向量作为非正交傅里叶类型的功能,用于通过定向图。我们通过将从其Dirichlet能量获得的随机步行操作员的特征向量的变化与其相关的特征值的真实部分连接来发现频率解释。从这个傅立叶基础,我们可以进一步继续,并在有向图中建立多尺度分析。通过将Coifman和MagGioni扩展到定向图,我们提出了一种冗余小波变换和抽取的小波变换。因此,我们对导向图的谐波分析的发展导致我们考虑应用于突出了我们框架效率的指示图的图形上的半监督学习问题和信号建模问题。
translated by 谷歌翻译
Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning.
translated by 谷歌翻译
为时空网络数据设计和分析学习模型对于包括预测,异常检测和多机构协调等任务非常重要。图形卷积神经网络(GCNN)是一种从时间不变的网络数据中学习的既定方法。图卷积操作提供了一种原则方法来汇总多分辨率信息。但是,将卷积原则性学习和各自的分析扩展到时空结构域是具有挑战性的,因为时空数据具有更多的固有依赖性。因此,需要更高的灵活性来捕获空间和时间依赖性以学习有意义的高阶表示。在这里,我们利用产品图来表示数据中的时空依赖性,并引入图表时间卷积神经网络(GTCNN)作为有原则的体系结构来帮助学习。提出的方法可以与任何类型的产品图一起使用,我们还引入了参数产品图,以学习时空耦合。卷积原理进一步允许与GCNN相似的数学障碍。特别是,稳定性结果表明GTCNN在空间扰动上是稳定的,但是在可区分性和鲁棒性之间存在隐含的权衡。即,模型越复杂,稳定较小。基准数据集的广泛数值结果证实了我们的发现,并显示GTCNN与最先进的解决方案相比有利。我们预计,GTCNN将成为更复杂的模型的起点,这些模型可以实现良好的性能,但从根本上讲是基础的。
translated by 谷歌翻译
我们通过严格的数学论点建设性地展示了GNN在紧凑型$ d $维欧几里得网格上的近似频带限制功能中的架构优于NN的架构。我们表明,前者只需要$ \ MATHCAL {m} $采样函数值就可以实现$ o_ {d}的均匀近似错误(2^{ - \ \ m athcal {m} {m}^{1/d/d/d}}}}} $从某种意义上说,这个错误率是最佳的,NNS可能会取得更糟的情况。
translated by 谷歌翻译
Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译
在处理大规模网络和关系数据时,降低图是基本的。它们可以通过在粗糙的结构中求解它们来缩小高度计算影响的尺寸。同时,图减少起着在图神经网络中合并层的作用,从结构中提取多分辨率表示。在这些情况下,还原机制保留距离关系和拓扑特性的能力似乎是基本的,以及可扩展性,使其能够应用于实际大小的问题。在本文中,我们基于最大重量$ k $独立的集合的图理论概念引入了图形粗化机制,从而提供了一种贪婪的算法,该算法允许在GPU上有效地并行实现。我们的方法是常规数据(图像,序列)中的第一个图形结构化对应物。我们证明了在路径长度上的失真界限的理论保证,以及在污垢图中保留关键拓扑特性的能力。我们利用这些概念来定义我们在图形分类任务中经验评估的图表合并机制,表明它与文献中的合并方法进行了比较。
translated by 谷歌翻译
图表表示学习有许多现实世界应用,从超级分辨率的成像,3D计算机视觉到药物重新扫描,蛋白质分类,社会网络分析。图表数据的足够表示对于图形结构数据的统计或机器学习模型的学习性能至关重要。在本文中,我们提出了一种用于图形数据的新型多尺度表示系统,称为抽取帧的图形数据,其在图表上形成了本地化的紧密框架。抽取的帧系统允许在粗粒链上存储图形数据表示,并在每个比例的多个尺度处处理图形数据,数据存储在子图中。基于此,我们通过建设性数据驱动滤波器组建立用于在多分辨率下分解和重建图数据的抽取G-Framewelet变换。图形帧构建基于基于链的正交基础,支持快速图傅里叶变换。由此,我们为抽取的G-Frameword变换或FGT提供了一种快速算法,该算法具有线性计算复杂度O(n),用于尺寸N的图表。用数值示例验证抽取的帧谱和FGT的理论,用于随机图形。现实世界应用的效果是展示的,包括用于交通网络的多分辨率分析,以及图形分类任务的图形神经网络。
translated by 谷歌翻译