图形神经网络(GNN)在许多领域中显示出优异的应用,其中数据基本上表示为图(例如,化学,生物学,推荐系统)。在该静脉中,通信网络包括许多以图形结构方式(例如,拓扑,配置,交通流量)自然表示的许多基本组件。该职位文章将GNNS作为用于建模,控制和管理通信网络的基本工具。 GNN表示新一代的数据驱动模型,可以准确地学习和再现真实网络后面的复杂行为。因此,这种模型可以应用于各种网络用例,例如规划,在线优化或故障排除。 GNN在传统的神经网络上的主要优点在于在培训期间应用于其他网络和配置时的前所未有的泛化能力,这是实现用于网络实际数据驱动解决方案的关键特征。本文包括关于GNN的简要教程及其对通信网络的可能应用。为了展示这项技术的潜力,我们展示了两种用例,分别应用于有线和无线网络的最先进的GNN模型。最后,我们深入研究了这一小说研究区的关键开放挑战和机会。
translated by 谷歌翻译
Network models are an essential block of modern networks. For example, they are widely used in network planning and optimization. However, as networks increase in scale and complexity, some models present limitations, such as the assumption of markovian traffic in queuing theory models, or the high computational cost of network simulators. Recent advances in machine learning, such as Graph Neural Networks (GNN), are enabling a new generation of network models that are data-driven and can learn complex non-linear behaviors. In this paper, we present RouteNet-Fermi, a custom GNN model that shares the same goals as queuing theory, while being considerably more accurate in the presence of realistic traffic models. The proposed model predicts accurately the delay, jitter, and loss in networks. We have tested RouteNet-Fermi in networks of increasing size (up to 300 nodes), including samples with mixed traffic profiles -- e.g., with complex non-markovian models -- and arbitrary routing and queue scheduling configurations. Our experimental results show that RouteNet-Fermi achieves similar accuracy as computationally-expensive packet-level simulators and it is able to accurately scale to large networks. For example, the model produces delay estimates with a mean relative error of 6.24% when applied to a test dataset with 1,000 samples, including network topologies one order of magnitude larger than those seen during training.
translated by 谷歌翻译
通信网络是当代社会中的重要基础设施。仍存在许多挑战,在该活性研究区域中不断提出新的解决方案。近年来,为了模拟网络拓扑,基于图形的深度学习在通信网络中的一系列问题中实现了最先进的性能。在本调查中,我们使用基于不同的图形的深度学习模型来审查快速增长的研究机构,例如,使用不同的图形深度学习模型。图表卷积和曲线图注意网络,在不同类型的通信网络中的各种问题中,例如,无线网络,有线网络和软件定义的网络。我们还为每项研究提供了一个有组织的问题和解决方案列表,并确定了未来的研究方向。据我们所知,本文是第一个专注于在涉及有线和无线场景的通信网络中应用基于图形的深度学习方法的调查。要跟踪后续研究,创建了一个公共GitHub存储库,其中相关文件将不断更新。
translated by 谷歌翻译
网络流问题涉及通过网络分配流量,以便有效地使用基础基础架构,在运输和物流上无处不在。由于数据驱动的优化的吸引力,这些问题已越来越多地使用图形学习方法解决。其中,鉴于其通用性,多商品网络流(MCNF)问题特别感兴趣,因为它涉及多个来源和水槽之间不同大小的多个流量(也称为需求)的分布。我们关注的广泛使用的目标是给定流量需求和路由策略的网络中任何链接的最大利用。在本文中,我们针对MCNF问题提出了一种基于图形神经网络(GNN)的新方法,该方法沿每个链接使用明显的参数化消息函数,类似于所有边缘类型都是唯一的关系模型。我们表明,我们所提出的方法比现有的图形学习方法获得了可观的收益,这些方法不必要地限制了路由。我们使用17个服务提供商拓扑和两个流程路由方案通过互联网路由案例研究广泛评估所提出的方法。我们发现,在许多网络中,MLP与不使用我们机制的通用GNN具有竞争力。此外,我们阐明了图结构与数据驱动的流动路由的难度之间的关系,该方面在该地区现有工作中尚未考虑。
translated by 谷歌翻译
深度强化学习(DRL)赋予了各种人工智能领域,包括模式识别,机器人技术,推荐系统和游戏。同样,图神经网络(GNN)也证明了它们在图形结构数据的监督学习方面的出色表现。最近,GNN与DRL用于图形结构环境的融合引起了很多关注。本文对这些混合动力作品进行了全面评论。这些作品可以分为两类:(1)算法增强,其中DRL和GNN相互补充以获得更好的实用性; (2)特定于应用程序的增强,其中DRL和GNN相互支持。这种融合有效地解决了工程和生命科学方面的各种复杂问题。基于审查,我们进一步分析了融合这两个领域的适用性和好处,尤其是在提高通用性和降低计算复杂性方面。最后,集成DRL和GNN的关键挑战以及潜在的未来研究方向被突出显示,这将引起更广泛的机器学习社区的关注。
translated by 谷歌翻译
As an efficient graph analytical tool, graph neural networks (GNNs) have special properties that are particularly fit for the characteristics and requirements of wireless communications, exhibiting good potential for the advancement of next-generation wireless communications. This article aims to provide a comprehensive overview of the interplay between GNNs and wireless communications, including GNNs for wireless communications (GNN4Com) and wireless communications for GNNs (Com4GNN). In particular, we discuss GNN4Com based on how graphical models are constructed and introduce Com4GNN with corresponding incentives. We also highlight potential research directions to promote future research endeavors for GNNs in wireless communications.
translated by 谷歌翻译
图表神经网络(GNNS)最近在人工智能(AI)领域的普及,这是由于它们作为输入数据相对非结构化数据类型的独特能力。尽管GNN架构的一些元素在概念上类似于传统神经网络(以及神经网络变体)的操作中,但是其他元件代表了传统深度学习技术的偏离。本教程通过整理和呈现有关GNN最常见和性能变种的动机,概念,数学和应用的细节,将GNN的权力和新颖性暴露给AI从业者。重要的是,我们简明扼要地向实际示例提出了本教程,从而为GNN的主题提供了实用和可访问的教程。
translated by 谷歌翻译
组合优化是运营研究和计算机科学领域的一个公认领域。直到最近,它的方法一直集中在孤立地解决问题实例,而忽略了它们通常源于实践中的相关数据分布。但是,近年来,人们对使用机器学习,尤其是图形神经网络(GNN)的兴趣激增,作为组合任务的关键构件,直接作为求解器或通过增强确切的求解器。GNN的电感偏差有效地编码了组合和关系输入,因为它们对排列和对输入稀疏性的意识的不变性。本文介绍了对这个新兴领域的最新主要进步的概念回顾,旨在优化和机器学习研究人员。
translated by 谷歌翻译
Deep learning-based approaches have been developed to solve challenging problems in wireless communications, leading to promising results. Early attempts adopted neural network architectures inherited from applications such as computer vision. They often yield poor performance in large scale networks (i.e., poor scalability) and unseen network settings (i.e., poor generalization). To resolve these issues, graph neural networks (GNNs) have been recently adopted, as they can effectively exploit the domain knowledge, i.e., the graph topology in wireless communications problems. GNN-based methods can achieve near-optimal performance in large-scale networks and generalize well under different system settings, but the theoretical underpinnings and design guidelines remain elusive, which may hinder their practical implementations. This paper endeavors to fill both the theoretical and practical gaps. For theoretical guarantees, we prove that GNNs achieve near-optimal performance in wireless networks with much fewer training samples than traditional neural architectures. Specifically, to solve an optimization problem on an $n$-node graph (where the nodes may represent users, base stations, or antennas), GNNs' generalization error and required number of training samples are $\mathcal{O}(n)$ and $\mathcal{O}(n^2)$ times lower than the unstructured multi-layer perceptrons. For design guidelines, we propose a unified framework that is applicable to general design problems in wireless networks, which includes graph modeling, neural architecture design, and theory-guided performance enhancement. Extensive simulations, which cover a variety of important problems and network settings, verify our theory and the effectiveness of the proposed design framework.
translated by 谷歌翻译
计算机架构和系统已优化了很长时间,以便高效执行机器学习(ML)模型。现在,是时候重新考虑ML和系统之间的关系,并让ML转换计算机架构和系统的设计方式。这有一个双重含义:改善设计师的生产力,以及完成良性周期。在这篇论文中,我们对应用ML进行计算机架构和系统设计的工作进行了全面的审查。首先,我们考虑ML技术在架构/系统设计中的典型作用,即快速预测建模或设计方法,我们执行高级分类学。然后,我们总结了通过ML技术解决的计算机架构/系统设计中的常见问题,并且所用典型的ML技术来解决它们中的每一个。除了在狭义中强调计算机架构外,我们采用数据中心可被认为是仓库规模计算机的概念;粗略的计算机系统中提供粗略讨论,例如代码生成和编译器;我们还注意ML技术如何帮助和改造设计自动化。我们进一步提供了对机会和潜在方向的未来愿景,并设想应用ML的计算机架构和系统将在社区中蓬勃发展。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
Graphs are ubiquitous in nature and can therefore serve as models for many practical but also theoretical problems. For this purpose, they can be defined as many different types which suitably reflect the individual contexts of the represented problem. To address cutting-edge problems based on graph data, the research field of Graph Neural Networks (GNNs) has emerged. Despite the field's youth and the speed at which new models are developed, many recent surveys have been published to keep track of them. Nevertheless, it has not yet been gathered which GNN can process what kind of graph types. In this survey, we give a detailed overview of already existing GNNs and, unlike previous surveys, categorize them according to their ability to handle different graph types and properties. We consider GNNs operating on static and dynamic graphs of different structural constitutions, with or without node or edge attributes. Moreover, we distinguish between GNN models for discrete-time or continuous-time dynamic graphs and group the models according to their architecture. We find that there are still graph types that are not or only rarely covered by existing GNN models. We point out where models are missing and give potential reasons for their absence.
translated by 谷歌翻译
Graph mining tasks arise from many different application domains, ranging from social networks, transportation to E-commerce, etc., which have been receiving great attention from the theoretical and algorithmic design communities in recent years, and there has been some pioneering work employing the research-rich Reinforcement Learning (RL) techniques to address graph data mining tasks. However, these graph mining methods and RL models are dispersed in different research areas, which makes it hard to compare them. In this survey, we provide a comprehensive overview of RL and graph mining methods and generalize these methods to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method descriptions, open-source codes, and benchmark datasets of GRL methods. Furthermore, we propose important directions and challenges to be solved in the future. As far as we know, this is the latest work on a comprehensive survey of GRL, this work provides a global view and a learning resource for scholars. In addition, we create an online open-source for both interested scholars who want to enter this rapidly developing domain and experts who would like to compare GRL methods.
translated by 谷歌翻译
图形神经网络(GNNS)已被广泛用于许多域,在这些领域中,数据被表示为图,包括社交网络,推荐系统,生物学,化学等。最近,GNNS的表现力引起了人们的兴趣。已经表明,尽管GNNS在许多应用中取得了有希望的经验结果,但GNN中存在一些局限性,阻碍了他们对某些任务的绩效。例如,由于GNNS更新节点功能主要基于本地信息,因此它们在捕获图中节点之间的长距离依赖性方面具有有限的表达能力。为了解决GNN的一些局限性,最近的几项工作开始探索增强的GNN,并记忆以提高其在相关任务中的表现力。在本文中,我们对现有的记忆启发性GNN的现有文献进行了全面综述。我们通过心理学和神经科学的角度回顾了这些作品,后者已经在生物学大脑中建立了多种记忆系统和机制。我们提出了记忆GNN作品的分类法,以及比较记忆机制的一组标准。我们还提供有关这些作品局限性的重要讨论。最后,我们讨论了该领域的挑战和未来方向。
translated by 谷歌翻译
为了促进5G机器学习的使用,国际电信联盟(ITU)在2021年提议的第二版是5G挑战中ITU AI/ML的第二版,来自82个国家/地区的1600多名参与者。这项工作详细介绍了第二位解决方案总体上,这也是图形神经网络挑战2021的获胜解决方案。我们在将模型应用于5G网络时解决了概括问题,该模型可能比观察到的途径更长,链路容量更长且链接能力更大在培训中。为了实现这一目标,我们建议首先提取与排队理论(QT)相关的强大特征,然后使用Routenet Graph神经网络(GNN)模型的修改对分析基线预测进行微调。所提出的解决方案比简单地使用Routenet更好地概括了,并设法将分析基线的10.42平均绝对百分比误差降低到1.45(合奏为1.27)。这表明,对已知鲁棒的近似模型进行小更改可能是提高准确性的有效方法,而不会损害概括。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are a family of graph networks inspired by mechanisms existing between nodes on a graph. In recent years there has been an increased interest in GNN and their derivatives, i.e., Graph Attention Networks (GAT), Graph Convolutional Networks (GCN), and Graph Recurrent Networks (GRN). An increase in their usability in computer vision is also observed. The number of GNN applications in this field continues to expand; it includes video analysis and understanding, action and behavior recognition, computational photography, image and video synthesis from zero or few shots, and many more. This contribution aims to collect papers published about GNN-based approaches towards computer vision. They are described and summarized from three perspectives. Firstly, we investigate the architectures of Graph Neural Networks and their derivatives used in this area to provide accurate and explainable recommendations for the ensuing investigations. As for the other aspect, we also present datasets used in these works. Finally, using graph analysis, we also examine relations between GNN-based studies in computer vision and potential sources of inspiration identified outside of this field.
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
高吞吐量数据处理应用的高效硬件加速器设计,例如深度神经网络,是计算机架构设计中有挑战性的任务。在这方面,高级合成(HLS)作为快速原型设计的解决方案,从应用程序计算流程的行为描述开始。这种设计空间探索(DSE)旨在识别帕累托最佳的合成配置,其穷举搜索由于设计空间维度和合成过程的禁止计算成本而往往不可行。在该框架内,我们通过提出在文献中,有效和有效地解决了设计问题图形神经网络,该神经网络共同预测了合成的行为规范的加速性能和硬件成本给出了优化指令。考虑到性能和成本估计,学习模型可用于通过引导DSE来快速接近帕累托曲线。所提出的方法优于传统的HLS驱动DSE方法,通过考虑任意长度的计算机程序和输入的不变特性。我们提出了一种新颖的混合控制和数据流图表示,可以在不同硬件加速器的规格上培训图形神经网络;该方法自然地转移到解除数据处理应用程序。此外,我们表明我们的方法实现了与常用模拟器的预测准确性相当,而无需访问HLS编译器和目标FPGA的分析模型,同时是更快的数量级。最后,通过微调来自新目标域的少量样本,可以在未开发的配置空间中解放所学习的表示。
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译