最小化能量的动力系统在几何和物理学中无处不在。我们为GNN提出了一个梯度流框架,其中方程遵循可学习能量的最陡峭下降的方向。这种方法允许从多粒子的角度来解释GNN的演变,以通过对称“通道混合”矩阵的正和负特征值在特征空间中学习吸引力和排斥力。我们对溶液进行光谱分析,并得出结论,梯度流量图卷积模型可以诱导以图高频为主导的动力学,这对于异性数据集是理想的。我们还描述了对常见GNN体系结构的结构约束,从而将其解释为梯度流。我们进行了彻底的消融研究,以证实我们的理论分析,并在现实世界同质和异性数据集上显示了简单和轻量级模型的竞争性能。
translated by 谷歌翻译
大多数图形神经网络(GNNS)使用传递范例的消息,其中节点特征在输入图上传播。最近的作品指出,从远处节点流动的信息失真,作为限制依赖于长途交互的任务的消息的效率。这种现象称为“过度挤压”,已经启动到图形瓶颈,其中$ k $ -hop邻居的数量以$ k $迅速增长。我们在GNNS中提供了精确描述了GNNS中的过度挤压现象,并分析了它如何从图中的瓶颈引发。为此目的,我们介绍了一种新的基于边缘的组合曲率,并证明了负曲面负责过度挤压问题。我们还提出并通过实验测试了一种基于曲率的曲线图重新挖掘方法,以减轻过度挤压。
translated by 谷歌翻译
神经消息传递是用于图形结构数据的基本功能提取单元,它考虑了相邻节点特征在网络传播中从一层到另一层的影响。我们通过相互作用的粒子系统与具有吸引力和排斥力的相互作用粒子系统以及在相变建模中产生的艾伦 - 卡恩力进行建模。该系统是一个反应扩散过程,可以将颗粒分离为不同的簇。这会导致图形神经网络的艾伦 - 卡恩消息传递(ACMP),其中解决方案的数值迭代构成了消息传播。 ACMP背后的机制是颗粒的相变,该颗粒能够形成多群集,从而实现GNNS预测进行节点分类。 ACMP可以将网络深度推向数百个层,理论上证明了严格的dirichlet能量下限。因此,它提供了GNN的深层模型,该模型避免了GNN过度厚度的常见问题。具有高均匀难度的各种实际节点分类数据集的实验表明,具有ACMP的GNN可以实现最先进的性能,而不会衰减Dirichlet Energy。
translated by 谷歌翻译
最新提出的基于变压器的图形模型的作品证明了香草变压器用于图形表示学习的不足。要了解这种不足,需要研究变压器的光谱分析是否会揭示其对其表现力的见解。类似的研究已经确定,图神经网络(GNN)的光谱分析为其表现力提供了额外的观点。在这项工作中,我们系统地研究并建立了变压器领域中的空间和光谱域之间的联系。我们进一步提供了理论分析,并证明了变压器中的空间注意机制无法有效捕获所需的频率响应,因此,固有地限制了其在光谱空间中的表现力。因此,我们提出了feta,该框架旨在在整个图形频谱(即图形的实际频率成分)上进行注意力类似于空间空间中的注意力。经验结果表明,FETA在标准基准的所有任务中为香草变压器提供均匀的性能增益,并且可以轻松地扩展到具有低通特性的基于GNN的模型(例如GAT)。
translated by 谷歌翻译
我们提出了图形耦合振荡器网络(GraphCon),这是一个新颖的图形学习框架。它基于普通微分方程(ODE)的二阶系统的离散化,该系统建模了非线性控制和阻尼振荡器网络,并通过基础图的邻接结构结合。我们的框架的灵活性允许作为耦合函数任何基本的GNN层(例如卷积或注意力),通过该函数,通过该函数通过该函数通过该函数通过该函数通过所提出的ODES的动力学来构建多层深神经网络。我们将GNN中通常遇到的过度厚度问题与基础ode的稳态稳定性联系起来,并表明零二核能能量稳态对于我们提出的ODE不稳定。这表明所提出的框架减轻了过度厚度的问题。此外,我们证明GraphCon减轻了爆炸和消失的梯度问题,以促进对多层GNN的训练。最后,我们证明我们的方法在各种基于图形的学习任务方面就最先进的方法提供了竞争性能。
translated by 谷歌翻译
Graph Neural Networks (graph NNs) are a promising deep learning approach for analyzing graph-structured data. However, it is known that they do not improve (or sometimes worsen) their predictive performance as we pile up many layers and add non-lineality. To tackle this problem, we investigate the expressive power of graph NNs via their asymptotic behaviors as the layer size tends to infinity. Our strategy is to generalize the forward propagation of a Graph Convolutional Network (GCN), which is a popular graph NN variant, as a specific dynamical system. In the case of a GCN, we show that when its weights satisfy the conditions determined by the spectra of the (augmented) normalized Laplacian, its output exponentially approaches the set of signals that carry information of the connected components and node degrees only for distinguishing nodes. Our theory enables us to relate the expressive power of GCNs with the topological information of the underlying graphs inherent in the graph spectra. To demonstrate this, we characterize the asymptotic behavior of GCNs on the Erdős -Rényi graph. We show that when the Erdős -Rényi graph is sufficiently dense and large, a broad range of GCNs on it suffers from the "information loss" in the limit of infinite layers with high probability. Based on the theory, we provide a principled guideline for weight normalization of graph NNs. We experimentally confirm that the proposed weight scaling enhances the predictive performance of GCNs in real data 1 .
translated by 谷歌翻译
光谱图神经网络是基于图信号过滤器的一种图神经网络(GNN)。一些能够学习任意光谱过滤器的模型最近出现了。但是,很少有作品分析光谱GNN的表达能力。本文理论上研究了光谱GNNS的表现力。我们首先证明,即使没有非线性的光谱GNN也可以产生任意的图形信号,并给出了两个条件以达到普遍性。它们是:1)图Laplacian的多个特征值和2)节点特征中没有缺失的频率组件。我们还建立了光谱GNN的表达能力与图形同构(GI)测试之间的联系,后者通常用于表征空间GNNS的表达能力。此外,我们从优化的角度研究了具有相同表达能力的不同光谱GNN之间的经验性能差异,并激发了其重量函数对应于光谱中图信号密度的正交基础的使用。受分析的启发,我们提出了Jacobiconv,该雅各比基的正交性和灵活性使用了雅各比的基础,以适应广泛的重量功能。 Jacobiconv抛弃了非线性,同时在合成和现实世界数据集上都超过了所有基线。
translated by 谷歌翻译
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filters the neighborhood information of nodes. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN models for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
translated by 谷歌翻译
已经观察到图形神经网络(GNN)有时难以在跨节点上建模的长距离依赖性之间保持健康的平衡,同时避免了诸如过天平的节点表示的非线性后果。为了解决这个问题(以及其他事情),最近提出了两个单独的策略,即隐含和展开的GNN。前者将节点表示作为深度平衡模型的固定点,其可以有效地促进横跨图形的任意隐式传播,具有固定的存储器占用。相反,后者涉及将图形传播作为应用于某些图形正则化能功能的展开渐变迭代处理。在这种情况下激励,在本文中,我们仔细阐明了这些方法的相似性和差异,量化了他们所产生的解决方案的明确情况实际上是等同的,而行为发散的其他方法。这包括分析会聚,代表能力和解释性。我们还提供各种综合和公共现实世界基准的经验性头脑比较。
translated by 谷歌翻译
图形神经网络(GNN)已被证明可以实现竞争结果,以解决与图形相关的任务,例如节点和图形分类,链接预测和节点以及各种域中的图形群集。大多数GNN使用消息传递框架,因此称为MPNN。尽管有很有希望的结果,但据报道,MPNN会遭受过度平滑,过度阵型和不足的影响。文献中已经提出了图形重新布线和图形池作为解决这些局限性的解决方案。但是,大多数最先进的图形重新布线方法无法保留该图的全局拓扑,因此没有可区分(电感),并且需要调整超参数。在本文中,我们提出了Diffwire,这是一个在MPNN中进行图形重新布线的新型框架,它通过利用LOV \'ASZ绑定来原理,完全可区分且无参数。我们的方法通过提出两个新的,mpnns中的新的互补层来提供统一的图形重新布线:首先,ctlayer,一个学习通勤时间并将其用作边缘重新加权的相关函数;其次,Gaplayer是优化光谱差距的图层,具体取决于网络的性质和手头的任务。我们从经验上验证了我们提出的方法的价值,并使用基准数据集分别验证了这些层的每个层以进行图形分类。 Diffwire将通勤时间的可学习性汇集到相关的曲率定义,为发展更具表现力的MPNN的发展打开了大门。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
图形神经网络(GNNS)对图表上的半监督节点分类展示了卓越的性能,结果是它们能够同时利用节点特征和拓扑信息的能力。然而,大多数GNN隐含地假设曲线图中的节点和其邻居的标签是相同或一致的,其不包含在异质图中,其中链接节点的标签可能不同。因此,当拓扑是非信息性的标签预测时,普通的GNN可以显着更差,而不是在每个节点上施加多层Perceptrons(MLPS)。为了解决上述问题,我们提出了一种新的$ -laplacian基于GNN模型,称为$ ^ P $ GNN,其消息传递机制来自离散正则化框架,并且可以理论上解释为多项式图的近似值在$ p $ -laplacians的频谱域上定义过滤器。光谱分析表明,新的消息传递机制同时用作低通和高通滤波器,从而使$ ^ P $ GNNS对同性恋和异化图有效。关于现实世界和合成数据集的实证研究验证了我们的调查结果,并证明了$ ^ P $ GNN明显优于异交基准的几个最先进的GNN架构,同时在同性恋基准上实现竞争性能。此外,$ ^ p $ gnns可以自适应地学习聚合权重,并且对嘈杂的边缘具有强大。
translated by 谷歌翻译
几何深度学习取得了长足的进步,旨在概括从传统领域到非欧几里得群岛的结构感知神经网络的设计,从而引起图形神经网络(GNN),这些神经网络(GNN)可以应用于形成的图形结构数据,例如社会,例如,网络,生物化学和材料科学。尤其是受欧几里得对应物的启发,尤其是图形卷积网络(GCN)通过提取结构感知功能来成功处理图形数据。但是,当前的GNN模型通常受到各种现象的限制,这些现象限制了其表达能力和推广到更复杂的图形数据集的能力。大多数模型基本上依赖于通过本地平均操作对图形信号的低通滤波,从而导致过度平滑。此外,为了避免严重的过度厚度,大多数流行的GCN式网络往往是较浅的,并且具有狭窄的接收场,导致侵犯。在这里,我们提出了一个混合GNN框架,该框架将传统的GCN过滤器与通过几何散射定义的带通滤波器相结合。我们进一步介绍了一个注意框架,该框架允许该模型在节点级别上从不同过滤器的组合信息进行本地参与。我们的理论结果确定了散射过滤器的互补益处,以利用图表中的结构信息,而我们的实验显示了我们方法对各种学习任务的好处。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
虽然图形神经网络(GNNS)最近成为用于建模关系数据的事实标准,但它们对图形节点或边缘特征的可用性产生了强烈的假设。然而,在许多现实世界应用中,功能仅部分可用;例如,在社交网络中,年龄和性别仅适用于一小部分用户。我们介绍了一种用于处理基于Dirichlet能量最小化的图形机学习应用中缺失特征的一般方法,并导致图表上的扩散型微分方程。该等方程的离散化产生了一种简单,快速且可伸缩的算法,我们调用特征传播。我们通过实验表明,所提出的方法在七个常见节点分类基准测试中优于先前的方法,并且可以承受令人惊讶的缺失特点率:平均而言,当缺少99%的功能时,我们只观察到约4%的相对精度下降。此外,在单个GPU上运行$ \ SIM $ 2.5M节点和$ \ SIM $ 123M边缘,只需10秒即可在单个GPU上运行。
translated by 谷歌翻译
提高GCN的深度(预计将允许更多表达性)显示出损害性能,尤其是在节点分类上。原因的主要原因在于过度平滑。过度平滑的问题将GCN的输出驱动到一个在节点之间包含有限的区别信息的空间,从而导致表现不佳。已经提出了一些有关完善GCN架构的作品,但理论上仍然未知这些改进是否能够缓解过度平衡。在本文中,我们首先从理论上分析了通用GCN如何与深度增加的作用,包括通用GCN,GCN,具有偏见,RESGCN和APPNP。我们发现所有这些模型都以通用过程为特征:所有节点融合到Cuboid。在该定理下,我们建议通过在每个训练时期随机去除一定数量的边缘来减轻过度光滑的状态。从理论上讲,Dropedge可以降低过度平滑的收敛速度,或者可以减轻尺寸崩溃引起的信息损失。对模拟数据集的实验评估已可视化不同GCN之间过度平滑的差异。此外,对几个真正的基准支持的广泛实验,这些实验始终如一地改善各种浅GCN和深度GCN的性能。
translated by 谷歌翻译
图形上的神经扩散是一类新型的图形神经网络,最近引起了越来越多的关注。图形神经偏微分方程(PDE)的能力在解决图形神经网络(GNN)的常见障碍方面的能力,例如过度平滑和瓶颈的问题,但尚未对其对逆性攻击的稳健性。在这项工作中,我们探讨了图神经PDE的稳健性。我们从经验上证明,与其他GNN相比,图形神经PDE在本质上对拓扑扰动更为强大。我们通过利用在图形拓扑扰动下利用热半群的稳定性来提供对这一现象的见解。我们讨论了各种图扩散操作员,并将它们与现有的图神经PDE相关联。此外,我们提出了一个一般图形神经PDE框架,可以通过该框架来定义新的强大GNN。我们验证了新模型在多个基准数据集上实现了可比的最新性能。
translated by 谷歌翻译
作为建模复杂关系的强大工具,HyperGraphs从图表学习社区中获得了流行。但是,深度刻画学习中的常用框架专注于具有边缘独立的顶点权重(EIVW)的超图,而无需考虑具有具有更多建模功率的边缘依赖性顶点权重(EDVWS)的超图。为了弥补这一点,我们提出了一般的超图光谱卷积(GHSC),这是一个通用学习框架,不仅可以处理EDVW和EIVW HyperGraphs,而且更重要的是,理论上可以明确地利用现有强大的图形卷积神经网络(GCNN)明确说明,从而很大程度上可以释放。超图神经网络的设计。在此框架中,给定的无向GCNN的图形拉普拉斯被统一的HyperGraph Laplacian替换,该统一的HyperGraph Laplacian通过将我们所定义的广义超透明牌与简单的无向图等同起来,从随机的步行角度将顶点权重信息替换。来自各个领域的广泛实验,包括社交网络分析,视觉目标分类和蛋白质学习,证明了拟议框架的最新性能。
translated by 谷歌翻译
A prominent paradigm for graph neural networks is based on the message passing framework. In this framework, information communication is realized only between neighboring nodes. The challenge of approaches that use this paradigm is to ensure efficient and accurate \textit{long distance communication} between nodes, as deep convolutional networks are prone to over-smoothing. In this paper, we present a novel method based on time derivative graph diffusion (TIDE), with a learnable time parameter. Our approach allows to adapt the spatial extent of diffusion across different tasks and network channels, thus enabling medium and long-distance communication efficiently. Furthermore, we show that our architecture directly enables local message passing and thus inherits from the expressive power of local message passing approaches. We show that on widely used graph benchmarks we achieve comparable performance and on a synthetic mesh dataset we outperform state-of-the-art methods like GCN or GRAND by a significant margin.
translated by 谷歌翻译