当源和目标域之间存在较大的差距时,常规域的适应方法无法正常工作。逐渐的域适应性是通过利用中间域来解决问题的方法之一,该域逐渐从源源转移到目标域。先前的工作假设中间域的数量很大,并且相邻域的距离很小。因此,适用于未标记的数据集通过自我训练的逐渐域适应算法。但是,实际上,由于中间域的数量有限,并且相邻域的距离很大,因此逐渐的自我训练将失败。我们建议使用归一化流量来减轻此问题,同时保持无监督域适应的框架。我们通过标准化流量生成伪中间域,然后将其用于逐渐的域适应性。我们通过使用现实世界数据集的实验来评估我们的方法,并确认我们提出的方法减轻了上述解释的问题并改善了分类性能。
translated by 谷歌翻译
在域适应性中,当源和目标域之间存在较大距离时,预测性能将降低。假设我们可以访问中间域,从源逐渐从源转移到目标域,则逐渐的域适应性是解决此类问题的解决方案之一。在以前的工作中,假定中间域中的样品数量足够大。因此,无需标记数据就可以进行自我训练。如果限制了可访问的中间域的数量,则域之间的距离变得很大,并且自我训练将失败。实际上,中间域中样品的成本会有所不同,自然可以考虑到中间域越接近目标域,从中间域中获得样品的成本就越高。为了解决成本和准确性之间的权衡,我们提出了一个结合了多重率和主动领域适应性的框架。通过使用现实世界数据集的实验来评估所提出方法的有效性。
translated by 谷歌翻译
无监督域适应(UDA)的绝大多数现有算法都集中在以一次性的方式直接从标记的源域调整到未标记的目标域。另一方面,逐渐的域适应性(GDA)假设桥接源和目标的$(t-1)$未标记的中间域,并旨在通过利用中间的路径在目标域中提供更好的概括。在某些假设下,Kumar等人。 (2020)提出了一种简单的算法,逐渐自我训练,以及按$ e^{o(t)} \ left的顺序结合的概括(\ varepsilon_0+o \ of \ left(\ sqrt {log(log(log(t)/n log(t)/n) } \ right)\ right)$对于目标域错误,其中$ \ varepsilon_0 $是源域错误,$ n $是每个域的数据大小。由于指数因素,当$ t $仅适中时,该上限变得空虚。在这项工作中,我们在更一般和放松的假设下分析了逐步的自我训练,并证明概括为$ \ varepsilon_0 + o \ left(t \ delta + t/\ sqrt {n} {n} \ right) + \ widetilde { o} \ left(1/\ sqrt {nt} \ right)$,其中$ \ delta $是连续域之间的平均分配距离。与对$ t $作为乘法因素的指数依赖性的现有界限相比,我们的界限仅取决于$ t $线性和添加性。也许更有趣的是,我们的结果意味着存在最佳的$ t $的最佳选择,从而最大程度地减少了概括性错误,并且自然也暗示了一种构造中间域路径的最佳方法,以最大程度地减少累积路径长度$ t \ delta源和目标之间的$。为了证实我们理论的含义,我们检查了对多个半合成和真实数据集的逐步自我训练,这证实了我们的发现。我们相信我们的见解为未来GDA算法设计的途径提供了前进的途径。
translated by 谷歌翻译
当源和目标域之间存在较大差异时,无监督域适应性的有效性会降低。通过利用逐渐从源到目标转移的其他未标记数据,逐渐的域适应(GDA)是减轻此问题的一种有希望的方法。通过依次沿“索引”中间域调整模型,GDA显着提高了整体适应性性能。但是,实际上,额外的未标记数据可能不会分离为中间域并正确索引,从而限制了GDA的适用性。在本文中,我们研究了如何在尚未可用时发现中间域的序列。具体而言,我们提出了一个粗到精细的框架,该框架从通过渐进域鉴别训练的粗域发现步骤开始。然后,这种粗糙的域序列通过新的周期矛盾损失进行了精细的索引步骤,这鼓励下一个中间域,以保留对当前中间域的足够判别知识。然后可以通过GDA算法使用所得的域序列。在GDA的基准数据集上,我们表明,我们将其命名为中间域标签(偶像)的方法可以导致与预定义的域序列相比,可相当甚至更好的适应性性能,使GDA更适合质量,使GDA更适用和强大域序列。代码可从https://github.com/hongyouc/idol获得。
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
深度学习模型的最新发展,捕捉作物物候的复杂的时间模式有卫星图像时间序列(坐在),大大高级作物分类。然而,当施加到目标区域从训练区空间上不同的,这些模型差没有任何目标标签由于作物物候区域之间的时间位移进行。为了解决这个无人监督跨区域适应环境,现有方法学域不变特征没有任何目标的监督,而不是时间偏移本身。因此,这些技术提供了SITS只有有限的好处。在本文中,我们提出TimeMatch,一种新的无监督领域适应性方法SITS直接占时移。 TimeMatch由两个部分组成:1)时间位移的估计,其估计具有源极训练模型的未标记的目标区域的时间偏移,和2)TimeMatch学习,它结合了时间位移估计与半监督学习到一个分类适应未标记的目标区域。我们还引进了跨区域适应的开放式访问的数据集与来自欧洲四个不同区域的旁边。在此数据集,我们证明了TimeMatch优于所有竞争的方法,通过11%的在五个不同的适应情景F1-得分,创下了新的国家的最先进的跨区域适应性。
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译
域的适应性旨在将从源域获得的标记实例转移到目标域,以填补域之间的空白。大多数域适应方法都假定源和目标域具有相同的维度。当每个域中的特征数量不同时,都很少研究当适用的方法,尤其是当未给出从目标域获得的测试数据的标签信息时。在本文中,假定在两个域中都存在共同特征,并且在目标域中观察到额外的(新的)特征。因此,目标域的维度高于源域的维度。为了利用共同特征的均匀性,这些源和目标域之间的适应性被称为最佳运输(OT)问题。此外,得出了基于ot的方法的目标域中的学习结合。使用模拟和现实世界数据对所提出的算法进行验证。
translated by 谷歌翻译
深度学习已成为解决不同领域中现实世界中问题的首选方法,部分原因是它能够从数据中学习并在广泛的应用程序上实现令人印象深刻的性能。但是,它的成功通常取决于两个假设:(i)精确模型拟合需要大量标记的数据集,并且(ii)培训和测试数据是独立的且分布相同的。因此,不能保证它在看不见的目标域上的性能,尤其是在适应阶段遇到分布数据的数据时。目标域中数据的性能下降是部署深层神经网络的关键问题,这些网络已成功地在源域中的数据训练。通过利用标记的源域数据和未标记的目标域数据来执行目标域中的各种任务,提出了无监督的域适应(UDA)来对抗这一点。 UDA在自然图像处理,视频分析,自然语言处理,时间序列数据分析,医学图像分析等方面取得了令人鼓舞的结果。在本综述中,作为一个快速发展的主题,我们对其方法和应用程序进行了系统的比较。此外,还讨论了UDA与其紧密相关的任务的联系,例如域的概括和分布外检测。此外,突出显示了当前方法和可能有希望的方向的缺陷。
translated by 谷歌翻译
在少数射击域适应(FDA)中,针对目标域的分类器在源域(SD)(SD)中使用可访问的标记数据进行训练,而目标域(TD)中的标记数据很少。但是,数据通常包含当前时代的私人信息,例如分布在个人电话上的数据。因此,如果我们直接访问SD中的数据以训练目标域分类器(FDA方法要求),则将泄漏私人信息。在本文中,为了彻底防止SD中的隐私泄漏,我们考虑了一个非常具有挑战性的问题设置,必须使用很少的标签目标数据和训练有素的SD分类器对TD的分类器进行培训,并将其命名为几个示例的假设适应(FHA)。在FHA中,我们无法访问SD中的数据,因此,SD中的私人信息将得到很好的保护。为此,我们提出了一个目标定向的假设适应网络(TOHAN)来解决FHA问题,在该问题中,我们生成了高度兼容的未标记数据(即中间域),以帮助培训目标域分类器。 Tohan同时保持了两个深网,其中一个专注于学习中间域,而另一个则要照顾中间靶向分布的适应性和目标风险最小化。实验结果表明,Tohan的表现要优于竞争基线。
translated by 谷歌翻译
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages.We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
translated by 谷歌翻译
This work provides a unified framework for addressing the problem of visual supervised domain adaptation and generalization with deep models. The main idea is to exploit the Siamese architecture to learn an embedding subspace that is discriminative, and where mapped visual domains are semantically aligned and yet maximally separated. The supervised setting becomes attractive especially when only few target data samples need to be labeled. In this scenario, alignment and separation of semantic probability distributions is difficult because of the lack of data. We found that by reverting to point-wise surrogates of distribution distances and similarities provides an effective solution. In addition, the approach has a high "speed" of adaptation, which requires an extremely low number of labeled target training samples, even one per category can be effective. The approach is extended to domain generalization. For both applications the experiments show very promising results.
translated by 谷歌翻译
典型的多源域适应性(MSDA)方法旨在将知识从一组标记的源域中学习的知识转移到一个未标记的目标域。然而,先前的工作严格假设每个源域都与目标域共享相同的类别类别,因为目标标签空间无法观察到,这几乎无法保证。在本文中,我们考虑了MSDA的更广泛的设置,即广义的多源域适应性,其中源域部分重叠,并且允许目标域包含任何源域中未呈现的新型类别。由于域的共存和类别跨源域和目标域的转移,因此这种新设置比任何现有的域适应协议都难以捉摸。为了解决这个问题,我们提出了一个变分域分解(VDD)框架,该框架通过鼓励尺寸独立性来分解每个实例的域表示和语义特征。为了识别未知类别的目标样本,我们利用在线伪标签,该标签将伪标签分配给基于置信分数的未标记目标数据。在两个基准数据集上进行的定量和定性实验证明了拟议框架的有效性。
translated by 谷歌翻译
域适应性是现代机器学习中的一种流行范式,旨在解决培训或验证数据集之间具有用于学习和测试分类器(源域)和潜在的大型未标记数据集的培训或验证数据集之间的分歧问题,其中利用了模型(目标域)(目标域)(目标域) 。任务是找到源数据集的源和目标数据集的这种常见表示,其中源数据集提供了培训的信息,因此可以最大程度地减少来源和目标之间的差异。目前,最流行的领域适应性解决方案是基于训练神经网络,这些神经网络结合了分类和对抗性学习模块,这些模块是饥饿的,通常很难训练。我们提出了一种称为域适应性主成分分析(DAPCA)的方法,该方法发现线性减少的数据表示有助于解决域适应任务。 DAPCA基于数据点对之间引入正权重,并概括了主成分分析的监督扩展。 DAPCA代表一种迭代算法,因此在每次迭代中都解决了一个简单的二次优化问题。保证算法的收敛性,并且在实践中的迭代次数很少。我们验证了先前提出的用于解决域适应任务的基准的建议算法,还显示了在生物医学应用中对单细胞法数据集进行分析中使用DAPCA的好处。总体而言,考虑到源域和目标域之间可能的差异,DAPCA可以作为许多机器学习应用程序中有用的预处理步骤。
translated by 谷歌翻译
Due to the ability of deep neural nets to learn rich representations, recent advances in unsupervised domain adaptation have focused on learning domain-invariant features that achieve a small error on the source domain. The hope is that the learnt representation, together with the hypothesis learnt from the source domain, can generalize to the target domain. In this paper, we first construct a simple counterexample showing that, contrary to common belief, the above conditions are not sufficient to guarantee successful domain adaptation. In particular, the counterexample exhibits conditional shift: the class-conditional distributions of input features change between source and target domains. To give a sufficient condition for domain adaptation, we propose a natural and interpretable generalization upper bound that explicitly takes into account the aforementioned shift. Moreover, we shed new light on the problem by proving an information-theoretic lower bound on the joint error of any domain adaptation method that attempts to learn invariant representations. Our result characterizes a fundamental tradeoff between learning invariant representations and achieving small joint error on both domains when the marginal label distributions differ from source to target. Finally, we conduct experiments on real-world datasets that corroborate our theoretical findings. We believe these insights are helpful in guiding the future design of domain adaptation and representation learning algorithms.
translated by 谷歌翻译
最近,无监督的域适应是一种有效的范例,用于概括深度神经网络到新的目标域。但是,仍有巨大的潜力才能达到完全监督的性能。在本文中,我们提出了一种新颖的主动学习策略,以帮助目标域中的知识转移,有效域适应。我们从观察开始,即当训练(源)和测试(目标)数据来自不同的分布时,基于能量的模型表现出自由能量偏差。灵感来自这种固有的机制,我们经验揭示了一种简单而有效的能源 - 基于能量的采样策略揭示了比需要特定架构或距离计算的现有方法的最有价值的目标样本。我们的算法,基于能量的活动域适应(EADA),查询逻辑数据组,它将域特征和实例不确定性结合到每个选择回合中。同时,通过通过正则化术语对准源域周围的目标数据紧凑的自由能,可以隐含地减少域间隙。通过广泛的实验,我们表明EADA在众所周知的具有挑战性的基准上超越了最先进的方法,具有实质性的改进,使其成为开放世界中的一个有用的选择。代码可在https://github.com/bit-da/eada获得。
translated by 谷歌翻译
最近,使用自动编码器(由使用神经网络建模的编码器,渠道和解码器组成)的通信系统的端到端学习问题最近被证明是一种有希望的方法。实际采用这种学习方法面临的挑战是,在变化的渠道条件(例如无线链接)下,它需要经常对自动编码器进行重新训练,以保持低解码错误率。由于重新培训既耗时又需要大量样本,因此当通道分布迅速变化时,它变得不切实际。我们建议使用不更改编码器和解码器网络的快速和样本(几射击)域的适应方法来解决此问题。不同于常规的训练时间无监督或半监督域的适应性,在这里,我们有一个训练有素的自动编码器,来自源分布,我们希望(在测试时间)使用仅使用一个小标记的数据集和无标记的数据来适应(测试时间)到目标分布。我们的方法着重于基于高斯混合物网络的通道模型,并根据类和组件条件仿射变换制定其适应性。学习的仿射转换用于设计解码器的最佳输入转换以补偿分布变化,并有效地呈现在接近源分布的解码器输入中。在实际MMWAVE FPGA设置以及无线设置共有的许多模拟分布变化上,使用非常少量的目标域样本来证明我们方法在适应时的有效性。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a well-labeled source domain to a different but related unlabeled target domain with identical label space. Currently, the main workhorse for solving UDA is domain alignment, which has proven successful. However, it is often difficult to find an appropriate source domain with identical label space. A more practical scenario is so-called partial domain adaptation (PDA) in which the source label set or space subsumes the target one. Unfortunately, in PDA, due to the existence of the irrelevant categories in the source domain, it is quite hard to obtain a perfect alignment, thus resulting in mode collapse and negative transfer. Although several efforts have been made by down-weighting the irrelevant source categories, the strategies used tend to be burdensome and risky since exactly which irrelevant categories are unknown. These challenges motivate us to find a relatively simpler alternative to solve PDA. To achieve this, we first provide a thorough theoretical analysis, which illustrates that the target risk is bounded by both model smoothness and between-domain discrepancy. Considering the difficulty of perfect alignment in solving PDA, we turn to focus on the model smoothness while discard the riskier domain alignment to enhance the adaptability of the model. Specifically, we instantiate the model smoothness as a quite simple intra-domain structure preserving (IDSP). To our best knowledge, this is the first naive attempt to address the PDA without domain alignment. Finally, our empirical results on multiple benchmark datasets demonstrate that IDSP is not only superior to the PDA SOTAs by a significant margin on some benchmarks (e.g., +10% on Cl->Rw and +8% on Ar->Rw ), but also complementary to domain alignment in the standard UDA
translated by 谷歌翻译
Deep domain adaptation has emerged as a new learning technique to address the lack of massive amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or reuse important source instances with shallow representations, deep domain adaptation methods leverage deep networks to learn more transferable representations by embedding domain adaptation in the pipeline of deep learning. There have been comprehensive surveys for shallow domain adaptation, but few timely reviews the emerging deep learning based methods. In this paper, we provide a comprehensive survey of deep domain adaptation methods for computer vision applications with four major contributions. First, we present a taxonomy of different deep domain adaptation scenarios according to the properties of data that define how two domains are diverged. Second, we summarize deep domain adaptation approaches into several categories based on training loss, and analyze and compare briefly the state-of-the-art methods under these categories. Third, we overview the computer vision applications that go beyond image classification, such as face recognition, semantic segmentation and object detection. Fourth, some potential deficiencies of current methods and several future directions are highlighted.
translated by 谷歌翻译
我们考虑了主动域适应(ADA)对未标记的目标数据的问题,其中哪个子集被主动选择并给定预算限制标记。受到对域适应性源和目标之间的标签分布不匹配的关键问题的最新分析的启发,我们设计了一种方法,该方法在ADA中首次解决该问题。它的核心是一种新颖的抽样策略,该策略寻求目标数据,以最能近似整个目标分布以及代表性,多样化和不确定。然后,采样目标数据不仅用于监督学习,还用于匹配源和目标域的标签分布,从而导致了显着的性能改善。在四个公共基准测试中,我们的方法在每个适应方案中都大大优于现有方法。
translated by 谷歌翻译