图像分割是医学图像场中的重要任务,并且已经提出了许多基于卷积神经网络(CNNS)的方法,其中U-Net及其变体表现出了有希望的性能。在本文中,我们提出了基于U-Net的GP模块和GPU-Net,通过引入幽灵模块和不足的空间金字塔池(ASPP),可以了解更多样化的功能。我们的方法实现了更好的性能,参数较少的4倍以上,拖鞋的2倍,为未来的研究提供了新的潜在方向。我们的即插即用模块也可以应用于现有的分段方法,以进一步提高其性能。
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
卷积神经网络(CNN)的深度学习体系结构在计算机视野领域取得了杰出的成功。 CNN构建的编码器架构U-Net在生物医学图像分割方面取得了重大突破,并且已在各种实用的情况下应用。但是,编码器部分中每个下采样层和简单堆积的卷积的平等设计不允许U-NET从不同深度提取足够的特征信息。医学图像的复杂性日益增加为现有方法带来了新的挑战。在本文中,我们提出了一个更深层,更紧凑的分裂注意U形网络(DCSAU-NET),该网络有效地利用了基于两个新颖框架的低级和高级语义信息:主要功能保护和紧凑的分裂注意力堵塞。我们评估了CVC-ClinicDB,2018 Data Science Bowl,ISIC-2018和SEGPC-2021数据集的建议模型。结果,DCSAU-NET在联合(MIOU)和F1-SOCRE的平均交点方面显示出比其他最先进的方法(SOTA)方法更好的性能。更重要的是,提出的模型在具有挑战性的图像上表现出了出色的细分性能。我们的工作代码以及更多技术细节,请访问https://github.com/xq141839/dcsau-net。
translated by 谷歌翻译
皮肤镜图像中的皮肤病变检测对于通过计算机化设备对皮肤癌的准确和早期诊断至关重要。当前的皮肤病变细分方法在具有挑战性的环境中表现出较差的性能,例如不明显的病变边界,病变和周围区域之间的对比度低,或导致皮肤病变分割的异质背景。为了准确识别邻近区域的病变,我们提出了基于卷积分解的扩张尺度特征融合网络。我们的网络旨在同时提取不同尺度的功能,这些功能是系统地融合的,以更好地检测。提出的模型具有令人满意的精度和效率。进行病变分割的各种实验以及与最新模型的比较。我们提出的模型始终展示最先进的结果。
translated by 谷歌翻译
U-Net and its extensions have achieved great success in medical image segmentation. However, due to the inherent local characteristics of ordinary convolution operations, U-Net encoder cannot effectively extract global context information. In addition, simple skip connections cannot capture salient features. In this work, we propose a fully convolutional segmentation network (CMU-Net) which incorporates hybrid convolutions and multi-scale attention gate. The ConvMixer module extracts global context information by mixing features at distant spatial locations. Moreover, the multi-scale attention gate emphasizes valuable features and achieves efficient skip connections. We evaluate the proposed method using both breast ultrasound datasets and a thyroid ultrasound image dataset; and CMU-Net achieves average Intersection over Union (IoU) values of 73.27% and 84.75%, and F1 scores of 84.81% and 91.71%. The code is available at https://github.com/FengheTan9/CMU-Net.
translated by 谷歌翻译
X射线图像在制造业的质量保证中起着重要作用,因为它可以反映焊接区域的内部条件。然而,不同缺陷类型的形状和规模大大变化,这使得模型检测焊接缺陷的挑战性。在本文中,我们提出了一种基于卷积神经网络的焊接缺陷检测方法,即打火机和更快的YOLO(LF-YOLO)。具体地,增强的多尺度特征(RMF)模块旨在实现基于参数和无参数的多尺度信息提取操作。 RMF使得提取的特征映射能够代表更丰富的信息,该信息是通过卓越的层级融合结构实现的。为了提高检测网络的性能,我们提出了一个有效的特征提取(EFE)模块。 EFE处理具有极低消耗量的输入数据,并提高了实际行业中整个网络的实用性。实验结果表明,我们的焊接缺陷检测网络在性能和消耗之间实现了令人满意的平衡,达到92.9平均平均精度MAP50,每秒61.5帧(FPS)。为了进一步证明我们方法的能力,我们在公共数据集MS Coco上测试它,结果表明我们的LF-YOLO具有出色的多功能性检测性能。代码可在https://github.com/lmomoy/lf-yolo上获得。
translated by 谷歌翻译
视觉地点识别(VPR)是一个具有挑战性的任务,具有巨大的计算成本与高识别性能之间的不平衡。由于轻质卷积神经网络(CNNS)和局部聚合描述符(VLAD)层向量的火车能力的实用特征提取能力,我们提出了一种由前部组成的轻量级弱监管的端到端神经网络-anded的感知模型称为ghostcnn和学习的VLAD层作为后端。 Ghostcnn基于幽灵模块,这些模块是基于重量的CNN架构。它们可以使用线性操作而不是传统的卷积过程生成冗余特征映射,从而在计算资源和识别准确性之间进行良好的权衡。为了进一步增强我们提出的轻量级模型,我们将扩张的卷曲添加到Ghost模块中,以获取包含更多空间语义信息的功能,提高准确性。最后,在常用的公共基准和我们的私人数据集上进行的丰富实验验证了所提出的神经网络,分别将VGG16-NetVlad的拖鞋和参数减少了99.04%和80.16%。此外,两种模型都达到了类似的准确性。
translated by 谷歌翻译
Semantic segmentation of UAV aerial remote sensing images provides a more efficient and convenient surveying and mapping method for traditional surveying and mapping. In order to make the model lightweight and improve a certain accuracy, this research developed a new lightweight and efficient network for the extraction of ground features from UAV aerial remote sensing images, called LDMCNet. Meanwhile, this research develops a powerful lightweight backbone network for the proposed semantic segmentation model. It is called LDCNet, and it is hoped that it can become the backbone network of a new generation of lightweight semantic segmentation algorithms. The proposed model uses dual multi-scale context modules, namely the Atrous Space Pyramid Pooling module (ASPP) and the Object Context Representation module (OCR). In addition, this research constructs a private dataset for semantic segmentation of aerial remote sensing images from drones. This data set contains 2431 training sets, 945 validation sets, and 475 test sets. The proposed model performs well on this dataset, with only 1.4M parameters and 5.48G floating-point operations (FLOPs), achieving an average intersection-over-union ratio (mIoU) of 71.12%. 7.88% higher than the baseline model. In order to verify the effectiveness of the proposed model, training on the public datasets "LoveDA" and "CITY-OSM" also achieved excellent results, achieving mIoU of 65.27% and 74.39%, respectively.
translated by 谷歌翻译
需要连续监测足部溃疡愈合,以确保给定治疗的功效并避免任何恶化。脚下溃疡分割是伤口诊断的重要步骤。我们开发了一种模型,其精神与良好的编码器编码器和残留卷积神经网络相似。我们的模型包括剩余的连接以及在每个卷积块中集成的通道和空间注意力。一种基于贴剂训练,测试时间增加以及对获得预测的多数投票的简单方法,导致了卓越的性能。我们的模型没有利用任何容易获得的骨干架构,在类似的外部数据集或任何转移学习技术上进行预训练。与用于足球溃疡细分任务的可用最新模型相比,网络参数的总数约为500万,这使其成为一个显着的轻巧模型。我们的实验在斑块级和图像级别上呈现了结果。我们的模型应用于Miccai 2021的公开脚步溃疡细分(Fuseg)挑战数据集,就骰子相似性得分而言,最先进的图像级绩效为88.22%,在官方挑战排行榜中排名第二。我们还展示了一个非常简单的解决方案,可以将其与更高级的体系结构进行比较。
translated by 谷歌翻译
自动图像分割技术对于视觉分析至关重要。自动编码器体系结构在各种图像分割任务中具有令人满意的性能。但是,基于卷积神经网络(CNN)的自动编码器似乎在提高语义分割的准确性方面遇到了瓶颈。增加前景和背景之间的类间距离是分割网络的固有特征。但是,分割网络过于关注前景和背景之间的主要视觉差异,而忽略了详细的边缘信息,从而导致边缘分割的准确性降低。在本文中,我们提出了一个基于多任务学习的轻量级端到端细分框架,称为Edge Coasity AutoCododer Network(EAA-NET),以提高边缘细分能力。我们的方法不仅利用分割网络来获得类间特征,而且还采用重建网络来提取前景中的类内特征。我们进一步设计了一个阶层和类间特征融合模块-I2融合模块。 I2融合模块用于合并课内和类间特征,并使用软注意机制去除无效的背景信息。实验结果表明,我们的方法在医疗图像分割任务中的表现良好。 EAA-NET易于实现,并且计算成本较小。
translated by 谷歌翻译
Covid-19的传播给世界带来了巨大的灾难,自动分割感染区域可以帮助医生快速诊断并减少工作量。但是,准确和完整的分割面临一些挑战,例如散射的感染区分布,复杂的背景噪声和模糊的分割边界。为此,在本文中,我们提出了一个新的网络,用于从CT图像(名为BCS-NET)的自动covid-19肺部感染分割,该网络考虑了边界,上下文和语义属性。 BCS-NET遵循编码器架构,更多的设计集中在解码器阶段,该阶段包括三个逐渐边界上下文 - 语义重建(BCSR)块。在每个BCSR块中,注意引导的全局上下文(AGGC)模块旨在通过突出显示重要的空间和边界位置并建模全局上下文依赖性来学习解码器最有价值的编码器功能。此外,语义指南(SG)单元通过在中间分辨率上汇总多规模的高级特征来生成语义指南图来完善解码器特征。广泛的实验表明,我们提出的框架在定性和定量上都优于现有竞争对手。
translated by 谷歌翻译
基于卷积神经网络(CNN)的现代单图像超分辨率(SISR)系统实现了花哨的性能,而需要巨大的计算成本。在视觉识别任务中对特征冗余的问题进行了很好的研究,但很少在SISR中进行讨论。基于这样的观察,SISR模型中的许多功能也彼此相似,我们建议使用Shift操作来生成冗余功能(即幽灵功能)。与在类似GPU的设备上耗时的深度卷积相比,Shift操作可以为CNN带来实用的推理加速度。我们分析了SISR操作对SISR任务的好处,并根据Gumbel-SoftMax技巧使Shift取向可学习。此外,基于预训练的模型探索了聚类过程,以识别用于生成内在特征的内在过滤器。幽灵功能将通过沿特定方向移动这些内在功能来得出。最后,完整的输出功能是通过将固有和幽灵特征串联在一起来构建的。在几个基准模型和数据集上进行的广泛实验表明,嵌入了所提出方法的非压缩和轻质SISR模型都可以实现与基准的可比性能,并大大降低了参数,拖台和GPU推荐延迟。例如,我们将参数降低46%,FLOPS掉落46%,而GPU推断潜伏期则减少了$ \ times2 $ EDSR网络的42%,基本上是无损的。
translated by 谷歌翻译
Breast cancer is one of the common cancers that endanger the health of women globally. Accurate target lesion segmentation is essential for early clinical intervention and postoperative follow-up. Recently, many convolutional neural networks (CNNs) have been proposed to segment breast tumors from ultrasound images. However, the complex ultrasound pattern and the variable tumor shape and size bring challenges to the accurate segmentation of the breast lesion. Motivated by the selective kernel convolution, we introduce an enhanced selective kernel convolution for breast tumor segmentation, which integrates multiple feature map region representations and adaptively recalibrates the weights of these feature map regions from the channel and spatial dimensions. This region recalibration strategy enables the network to focus more on high-contributing region features and mitigate the perturbation of less useful regions. Finally, the enhanced selective kernel convolution is integrated into U-net with deep supervision constraints to adaptively capture the robust representation of breast tumors. Extensive experiments with twelve state-of-the-art deep learning segmentation methods on three public breast ultrasound datasets demonstrate that our method has a more competitive segmentation performance in breast ultrasound images.
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译
人行道表面数据的获取和评估在路面条件评估中起着至关重要的作用。在本文中,提出了一个称为RHA-NET的自动路面裂纹分割的有效端到端网络,以提高路面裂纹分割精度。 RHA-NET是通过将残留块(重阻)和混合注意块集成到编码器架构结构中来构建的。这些重组用于提高RHA-NET提取高级抽象特征的能力。混合注意块旨在融合低级功能和高级功能,以帮助模型专注于正确的频道和裂纹区域,从而提高RHA-NET的功能表现能力。构建并用于训练和评估所提出的模型的图像数据集,其中包含由自设计的移动机器人收集的789个路面裂纹图像。与其他最先进的网络相比,所提出的模型在全面的消融研究中验证了添加残留块和混合注意机制的功能。此外,通过引入深度可分离卷积生成的模型的轻加权版本可以更好地实现性能和更快的处理速度,而U-NET参数数量的1/30。开发的系统可以在嵌入式设备Jetson TX2(25 fps)上实时划分路面裂纹。实时实验拍摄的视频将在https://youtu.be/3xiogk0fig4上发布。
translated by 谷歌翻译
数据采集​​和注释中的困难基本上限制了3D医学成像应用的训练数据集的样本尺寸。结果,在没有足够的预训练参数的情况下,构建来自划痕的高性能3D卷积神经网络仍然是一项艰巨的任务。以前关于3D预培训的努力经常依赖于自我监督的方法,它在未标记的数据上使用预测或对比学习来构建不变的3D表示。然而,由于大规模监督信息的不可用,从这些学习框架获得语义不变和歧视性表示仍然存在问题。在本文中,我们重新审视了一种创新但简单的完全监督的3D网络预训练框架,以利用来自大型2D自然图像数据集的语义监督。通过重新设计的3D网络架构,重新设计的自然图像用于解决数据稀缺问题并开发强大的3D表示。四个基准数据集上的综合实验表明,所提出的预先接受的模型可以有效地加速收敛,同时还提高了各种3D医学成像任务,例如分类,分割和检测的准确性。此外,与从头划伤的训练相比,它可以节省高达60%的注释工作。在NIH Deeplesion数据集上,它同样地实现了最先进的检测性能,优于早期的自我监督和完全监督的预训练方法,以及从头训练进行培训的方法。为了促进3D医疗模型的进一步发展,我们的代码和预先接受的模型权重在https://github.com/urmagicsmine/cspr上公开使用。
translated by 谷歌翻译
计算机辅助医学图像分割已广泛应用于诊断和治疗,以获得靶器官和组织的形状和体积的临床有用信息。在过去的几年中,基于卷积神经网络(CNN)的方法(例如,U-Net)占主导地位,但仍遭受了不足的远程信息捕获。因此,最近的工作提出了用于医学图像分割任务的计算机视觉变压器变体,并获得了有希望的表现。这种变压器通过计算配对贴片关系来模拟远程依赖性。然而,它们促进了禁止的计算成本,尤其是在3D医学图像(例如,CT和MRI)上。在本文中,我们提出了一种称为扩张变压器的新方法,该方法在本地和全球范围内交替捕获的配对贴片关系进行自我关注。灵感来自扩张卷积核,我们以扩张的方式进行全球自我关注,扩大接收领域而不增加所涉及的斑块,从而降低计算成本。基于这种扩展变压器的设计,我们构造了一个用于3D医学图像分割的U形编码器解码器分层体系结构。 Synapse和ACDC数据集的实验表明,我们的D-Ager Model从头开始培训,以低计算成本从划痕训练,优于各种竞争力的CNN或基于变压器的分段模型,而不耗时的每训练过程。
translated by 谷歌翻译
Transformer-based models have been widely demonstrated to be successful in computer vision tasks by modelling long-range dependencies and capturing global representations. However, they are often dominated by features of large patterns leading to the loss of local details (e.g., boundaries and small objects), which are critical in medical image segmentation. To alleviate this problem, we propose a Dual-Aggregation Transformer Network called DuAT, which is characterized by two innovative designs, namely, the Global-to-Local Spatial Aggregation (GLSA) and Selective Boundary Aggregation (SBA) modules. The GLSA has the ability to aggregate and represent both global and local spatial features, which are beneficial for locating large and small objects, respectively. The SBA module is used to aggregate the boundary characteristic from low-level features and semantic information from high-level features for better preserving boundary details and locating the re-calibration objects. Extensive experiments in six benchmark datasets demonstrate that our proposed model outperforms state-of-the-art methods in the segmentation of skin lesion images, and polyps in colonoscopy images. In addition, our approach is more robust than existing methods in various challenging situations such as small object segmentation and ambiguous object boundaries.
translated by 谷歌翻译