从成对比较中恢复全球排名从时间同步到运动队排名的广泛应用。对应于竞争中匹配的成对比较可以解释为有向图(Digraph)中的边缘,其节点代表例如竞争对手的排名未知。在本文中,我们通过提出所谓的Gnnrank,这是一种基于Digraph嵌入的基于训练的GNN框架,将神经网络引入排名恢复问题。此外,设计了新的目标来编码排名upsess/违规行为。该框架涉及一种排名得分估计方法,并通过展开从可学习的相似性矩阵构建的图形的fiedler矢量计算来增加电感偏差。广泛数据集的实验结果表明,我们的方法具有竞争性,并且通常对基准的表现卓越,并且表现出了有希望的转移能力。代码和预处理数据为:\ url {https://github.com/sherylhyx/gnnrank}。
translated by 谷歌翻译
在现实世界中,签名的定向网络无处不在。但是,对于分析此类网络的方法,较少的工作提出了频谱图神经网络(GNN)方法。在这里,我们介绍了一个签名的定向拉普拉斯矩阵,我们称之为磁性签名的laplacian,作为在签名的图表上签名的laplacian的自然概括,在有向图上的磁Laplacian。然后,我们使用此矩阵来构建一种新型的光谱GNN结构,并在节点聚类和链接预测任务上进行广泛的实验。在这些实验中,我们考虑了与签名信息有关的任务,与定向信息相关的任务以及与签名和定向信息有关的任务。我们证明,我们提出的光谱GNN有效地合并了签名和定向信息,并在广泛的数据集中获得领先的性能。此外,我们提供了一种新颖的合成网络模型,我们称之为签名的定向随机块模型,以及许多基于财务时间序列中铅滞后关系的新型现实世界数据集。
translated by 谷歌翻译
我们的世界充满了不对称。重力和风能使与回来更容易到达地方。诸如家谱图和引文图之类的社会文物固有地定向。在强化学习和控制中,最佳目标策略很少是可逆的(对称性)。这些不对称结构支持的距离函数称为准函数。尽管出现了共同的外观,但对准对象的学习几乎没有研究。我们的理论分析表明,一种通用的学习算法,包括不受限制的多层感知器(MLP),事实证明,学习与培训数据一致的准学学都无法学习。相比之下,我们提出的泊松准嵌入(PQE)是第一个准学的学习配方,两者都可以通过基于梯度的优化来学习,并且具有强大的性能保证。在随机图,社交图和离线Q学习上进行的实验证明了其对许多常见基线的有效性。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
尽管近期图形神经网络(GNN)成功,但常见的架构通常表现出显着的限制,包括对过天飞机,远程依赖性和杂散边缘的敏感性,例如,由于图形异常或对抗性攻击。至少部分地解决了一个简单的透明框架内的这些问题,我们考虑了一个新的GNN层系列,旨在模仿和整合两个经典迭代算法的更新规则,即近端梯度下降和迭代重复最小二乘(IRLS)。前者定义了一个可扩展的基础GNN架构,其免受过性的,而仍然可以通过允许任意传播步骤捕获远程依赖性。相反,后者产生了一种新颖的注意机制,该注意机制被明确地锚定到底层端到端能量函数,以及相对于边缘不确定性的稳定性。当结合时,我们获得了一个非常简单而强大的模型,我们在包括标准化基准,与异常扰动的图形,具有异化的图形和涉及远程依赖性的图形的不同方案的极其简单而强大的模型。在此过程中,我们与已明确为各个任务设计的SOTA GNN方法进行比较,实现竞争或卓越的节点分类准确性。我们的代码可以在https://github.com/fftyyy/twirls获得。
translated by 谷歌翻译
Graph clustering is a fundamental problem in unsupervised learning, with numerous applications in computer science and in analysing real-world data. In many real-world applications, we find that the clusters have a significant high-level structure. This is often overlooked in the design and analysis of graph clustering algorithms which make strong simplifying assumptions about the structure of the graph. This thesis addresses the natural question of whether the structure of clusters can be learned efficiently and describes four new algorithmic results for learning such structure in graphs and hypergraphs. All of the presented theoretical results are extensively evaluated on both synthetic and real-word datasets of different domains, including image classification and segmentation, migration networks, co-authorship networks, and natural language processing. These experimental results demonstrate that the newly developed algorithms are practical, effective, and immediately applicable for learning the structure of clusters in real-world data.
translated by 谷歌翻译
图表神经网络(GNNS)在各种机器学习任务中获得了表示学习的提高。然而,应用邻域聚合的大多数现有GNN通常在图中的图表上执行不良,其中相邻的节点属于不同的类。在本文中,我们示出了在典型的异界图中,边缘可以被引导,以及是否像是处理边缘,也可以使它们过度地影响到GNN模型的性能。此外,由于异常的限制,节点对来自本地邻域之外的类似节点的消息非常有益。这些激励我们开发一个自适应地学习图表的方向性的模型,并利用潜在的长距离相关性节点之间。我们首先将图拉普拉斯概括为基于所提出的特征感知PageRank算法向数字化,该算法同时考虑节点之间的图形方向性和长距离特征相似性。然后,Digraph Laplacian定义了一个图形传播矩阵,导致一个名为{\ em diglaciangcn}的模型。基于此,我们进一步利用节点之间的通勤时间测量的节点接近度,以便在拓扑级别上保留节点的远距离相关性。具有不同级别的10个数据集的广泛实验,同意级别展示了我们在节点分类任务任务中对现有解决方案的有效性。
translated by 谷歌翻译
已经观察到图形神经网络(GNN)有时难以在跨节点上建模的长距离依赖性之间保持健康的平衡,同时避免了诸如过天平的节点表示的非线性后果。为了解决这个问题(以及其他事情),最近提出了两个单独的策略,即隐含和展开的GNN。前者将节点表示作为深度平衡模型的固定点,其可以有效地促进横跨图形的任意隐式传播,具有固定的存储器占用。相反,后者涉及将图形传播作为应用于某些图形正则化能功能的展开渐变迭代处理。在这种情况下激励,在本文中,我们仔细阐明了这些方法的相似性和差异,量化了他们所产生的解决方案的明确情况实际上是等同的,而行为发散的其他方法。这包括分析会聚,代表能力和解释性。我们还提供各种综合和公共现实世界基准的经验性头脑比较。
translated by 谷歌翻译
可以将一组个人或组织之间的战略互动建模为在网络上玩的游戏,在网络上,玩家的回报不仅取决于他们的行动,还取决于邻居的行动。从观察到的游戏结果(平衡动作)中推断网络结构是一个重要的问题,对于经济学和社会科学中的许多潜在应用。现有方法主要需要与游戏相关的效用函数的知识,在现实世界中,这通常是不现实的。我们采用类似变压器的体系结构,该体系结构正确说明了问题的对称性,并在没有明确了解效用功能的情况下学习了从平衡动作到游戏网络结构的映射。我们使用合成和现实世界数据在三种不同类型的网络游戏上测试我们的方法,并证明其在网络结构推理中的有效性和优于现有方法的卓越性能。
translated by 谷歌翻译
我们提出了一个分散的“Local2Global”的图形表示学习方法,即可以先用来缩放任何嵌入技术。我们的Local2Global方法首先将输入图分成重叠的子图(或“修补程序”)并独立地培训每个修补程序的本地表示。在第二步中,我们通过估计使用来自贴片重叠的信息的刚性动作的一组刚性运动来将本地表示将本地表示与全局一致的表示。 Local2Global相对于现有工作的关键区别特征是,在分布式训练期间无需经常昂贵的参数同步训练曲线的培训。这允许Local2Global缩放到大规模的工业应用,其中输入图甚至可能均不适合存储器,并且可以以分布式方式存储。我们在不同大小的数据集上应用Local2Global,并表明我们的方法在边缘重建和半监督分类上的规模和准确性之间实现了良好的权衡。我们还考虑异常检测的下游任务,并展示如何使用Local2Global在网络安全网络中突出显示异常。
translated by 谷歌翻译
网络在许多现实世界应用程序中无处不在(例如,编码信任/不信任关系的社交网络,由时间序列数据引起的相关网络)。尽管许多网络都是签名或指示的,或者两者都在图形神经网络(GNN)上缺少统一的软件包,专门为签名和定向网络设计。在本文中,我们提出了Pytorch几何签名的指示,这是一个填补此空白的软件包。在此过程中,我们还提供了简短的审查调查,以分析签名和定向网络的分析,讨论相关实验中使用的数据,提供提出的方法概述,并通过实验评估实施方法。深度学习框架包括易于使用的GNN模型,合成和现实世界数据,以及针对签名和定向网络的特定任务评估指标和损失功能。作为Pytorch几何形状的扩展库,我们提出的软件由开源版本,详细文档,连续集成,单位测试和代码覆盖范围检查维护。我们的代码可在\ url {https://github.com/sherylhyx/pytorch_geometric_signed_directed}上公开获得。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
作为建模复杂关系的强大工具,HyperGraphs从图表学习社区中获得了流行。但是,深度刻画学习中的常用框架专注于具有边缘独立的顶点权重(EIVW)的超图,而无需考虑具有具有更多建模功率的边缘依赖性顶点权重(EDVWS)的超图。为了弥补这一点,我们提出了一般的超图光谱卷积(GHSC),这是一个通用学习框架,不仅可以处理EDVW和EIVW HyperGraphs,而且更重要的是,理论上可以明确地利用现有强大的图形卷积神经网络(GCNN)明确说明,从而很大程度上可以释放。超图神经网络的设计。在此框架中,给定的无向GCNN的图形拉普拉斯被统一的HyperGraph Laplacian替换,该统一的HyperGraph Laplacian通过将我们所定义的广义超透明牌与简单的无向图等同起来,从随机的步行角度将顶点权重信息替换。来自各个领域的广泛实验,包括社交网络分析,视觉目标分类和蛋白质学习,证明了拟议框架的最新性能。
translated by 谷歌翻译
图形神经网络(GNNS)在提供图形结构时良好工作。但是,这种结构可能并不总是在现实世界应用中可用。该问题的一个解决方案是推断任务特定的潜在结构,然后将GNN应用于推断的图形。不幸的是,可能的图形结构的空间与节点的数量超级呈指数,因此任务特定的监督可能不足以学习结构和GNN参数。在这项工作中,我们提出了具有自我监督或拍打的邻接和GNN参数的同时学习,这是通过自我监督来推断图形结构的更多监督的方法。一个综合实验研究表明,缩小到具有数十万个节点的大图和胜过了几种模型,以便在已建立的基准上学习特定于任务的图形结构。
translated by 谷歌翻译
由于其数值益处增加及其坚实的数学背景,光谱聚类方法的非线性重构近来的关注。我们在$ p $ -norm中提出了一种新的直接多道谱聚类算法,以$ p \ in(1,2] $。计算图表的多个特征向量的问题$ p $ -laplacian,标准的非线性概括Graph Laplacian,被重用作为Grassmann歧管的无约束最小化问题。$ P $的价值以伪连续的方式减少,促进对应于最佳图形的稀疏解决方案载体作为$ P $接近。监测单调减少平衡图削减了我们从$ P $ -Levels获得的最佳可用解决方案的保证。我们展示了我们算法在各种人工测试案件中的算法的有效性和准确性。我们的数值和比较结果具有各种状态-Art聚类方法表明,所提出的方法在均衡的图形剪切度量和标签分配的准确性方面取得高质量的集群。此外,我们进行S面部图像和手写字符分类的束缚,以展示现实数据集中的适用性。
translated by 谷歌翻译
目前的论文研究了最小化损失$ f(\ boldsymbol {x})$的问题,而在s $ \ boldsymbol {d} \ boldsymbol {x} \的约束,其中$ s $是一个关闭的集合,凸面或非,$ \ boldsymbol {d} $是熔化参数的矩阵。融合约束可以捕获平滑度,稀疏或更一般的约束模式。为了解决这个通用的问题,我们将Beltrami-Courant罚球方法与近距离原则相结合。后者是通过最小化惩罚目标的推动$ f(\ boldsymbol {x})+ \ frac {\ rho} {2} \ text {dist}(\ boldsymbol {d} \ boldsymbol {x},s)^ 2 $涉及大型调整常量$ \ rho $和$ \ boldsymbol {d} \ boldsymbol {x} $的平方欧几里德距离$ s $。通过最小化大多数代理函数$ f(\ boldsymbol {x},从当前迭代$ \ boldsymbol {x} _n $构建相应的近距离算法的下一个迭代$ \ boldsymbol {x} _ {n + 1} $。 )+ \ frac {\ rho} {2} \ | \ boldsymbol {d} \ boldsymbol {x} - \ mathcal {p} _ {s}(\ boldsymbol {d} \ boldsymbol {x} _n)\ | ^ 2 $。对于固定$ \ rho $和subanalytic损失$ f(\ boldsymbol {x})$和子质约束设置$ s $,我们证明了汇聚点。在更强大的假设下,我们提供了收敛速率并展示线性本地收敛性。我们还构造了一个最陡的下降(SD)变型,以避免昂贵的线性系统解决。为了基准我们的算法,我们比较乘法器(ADMM)的交替方向方法。我们广泛的数值测试包括在度量投影,凸回归,凸聚类,总变化图像去噪和矩阵的投影到良好状态数的问题。这些实验表明了我们在高维问题上最陡的速度和可接受的准确性。
translated by 谷歌翻译
在过去的几年中,已经开发了图形绘图技术,目的是生成美学上令人愉悦的节点链接布局。最近,利用可区分损失功能的使用已为大量使用梯度下降和相关优化算法铺平了道路。在本文中,我们提出了一个用于开发图神经抽屉(GND)的新框架,即依靠神经计算来构建有效且复杂的图的机器。 GND是图形神经网络(GNN),其学习过程可以由任何提供的损失函数(例如图形图中通常使用的损失函数)驱动。此外,我们证明,该机制可以由通过前馈神经网络计算的损失函数来指导,并根据表达美容特性的监督提示,例如交叉边缘的最小化。在这种情况下,我们表明GNN可以通过位置功能很好地丰富与未标记的顶点处理。我们通过为边缘交叉构建损失函数来提供概念验证,并在提议的框架下工作的不同GNN模型之间提供定量和定性的比较。
translated by 谷歌翻译
消息传递神经网络(MPNNS)是由于其简单性和可扩展性而大部分地进行图形结构数据的深度学习的领先架构。不幸的是,有人认为这些架构的表现力有限。本文提出了一种名为Comifariant Subgraph聚合网络(ESAN)的新颖框架来解决这个问题。我们的主要观察是,虽然两个图可能无法通过MPNN可区分,但它们通常包含可区分的子图。因此,我们建议将每个图形作为由某些预定义策略导出的一组子图,并使用合适的等分性架构来处理它。我们为图同构同构同构造的1立维Weisfeiler-Leman(1-WL)测试的新型变体,并在这些新的WL变体方面证明了ESAN的表达性下限。我们进一步证明,我们的方法增加了MPNNS和更具表现力的架构的表现力。此外,我们提供了理论结果,描述了设计选择诸如子图选择政策和等效性神经结构的设计方式如何影响我们的架构的表现力。要处理增加的计算成本,我们提出了一种子图采样方案,可以将其视为我们框架的随机版本。关于真实和合成数据集的一套全面的实验表明,我们的框架提高了流行的GNN架构的表现力和整体性能。
translated by 谷歌翻译
图形神经网络(GNN)已在许多图分析任务(例如节点分类和链接预测)上实现了最新结果。然而,事实证明,图形群集等图形上的重要无监督问题对GNN的进步具有更大的抵抗力。图群集的总体目标与GNN中的节点合并相同 - 这是否意味着GNN池方法在聚类图上做得很好?令人惊讶的是,答案是没有的 - 当前的GNN合并方法通常无法恢复群集结构,而在简单的基线(例如应用于学习的表示形式上的K-均值)良好工作的情况下。我们通过仔细设计一组实验来进一步研究,以研究图形结构和属性数据中的不同信噪比情景。为了解决这些方法在聚类中的性能不佳,我们引入了深层模块化网络(DMON),这是一种受群集质量模块化量度启发的无监督池方法,并显示了它如何解决现实世界图的挑战性聚类结构的恢复。同样,在现实世界中,我们表明DMON产生的高质量簇与地面真相标签密切相关,从而实现了最先进的结果,比不同指标的其他合并方法提高了40%以上。
translated by 谷歌翻译