近年来,商业上可用和负担得起的四足动物机器人激增,其中许多平台在研究和行业中都被积极使用。随着腿部机器人的可用性的增长,对这些机器人能够执行有用技能的控制器的需求也是如此。但是,大多数用于控制器开发的基于学习的框架都集中在培训机器人特定的控制器上,该过程需要为每个新机器人重复。在这项工作中,我们引入了一个用于训练四足机器人的广义运动(Genloco)控制器的框架。我们的框架合成了可以部署在具有相似形态的各种四足动物的机器人上的通用运动控制器。我们提出了一种简单但有效的形态随机化方法,该方法在程序上生成了一组训练的模拟机器人。我们表明,通过对这套模拟机器人进行训练,我们的模型获得了更多的通用控制策略,这些策略可以直接转移到具有多种形态的新型模拟和真实世界机器人中,在训练过程中未观察到。
translated by 谷歌翻译
我们解决了使四足机器人能够使用强化学习在现实世界中执行精确的射击技巧的问题。开发算法使腿部机器人能够向给定的目标射击足球,这是一个具有挑战性的问题,它将机器人运动控制和计划结合到一项任务中。为了解决这个问题,我们需要考虑控制动态腿部机器人期间的动态限制和运动稳定性。此外,我们需要考虑运动计划,以在地面上射击难以模拟的可变形球,并不确定摩擦到所需的位置。在本文中,我们提出了一个层次结构框架,该框架利用深厚的强化学习来训练(a)强大的运动控制政策,可以跟踪任意动议,以及(b)一项计划政策,以决定所需的踢球运动将足球射击到目标。我们将提议的框架部署在A1四足动物机器人上,使其能够将球准确地射击到现实世界中的随机目标。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
腿部运动的最新进展使四足动物在具有挑战性的地形上行走。但是,两足机器人本质上更加不稳定,因此很难为其设计步行控制器。在这项工作中,我们利用了对机车控制的快速适应的最新进展,并将其扩展到双皮亚机器人。与现有作品类似,我们从基本策略开始,该策略在将适应模块的输入中作为输入作为输入。该外部媒介包含有关环境的信息,并使步行控制器能够快速在线适应。但是,外部估计器可能是不完善的,这可能导致基本政策的性能不佳,这预计是一个完美的估计器。在本文中,我们提出了A-RMA(Adapting RMA),该A-RMA(适应RMA)还通过使用无模型RL对其进行了鉴定,从而适应了不完美的外部外部估计器的基本策略。我们证明,A-RMA在仿真中胜过许多基于RL的基线控制器和基于模型的控制器,并显示了单个A-RMA策略的零拍摄部署,以使双皮德机器人Cassie能够在各种各样的现实世界中的不同场景超出了培训期间所见。 https://ashish-kmr.github.io/a-rma/的视频和结果
translated by 谷歌翻译
Reinforcement Learning (RL) has seen many recent successes for quadruped robot control. The imitation of reference motions provides a simple and powerful prior for guiding solutions towards desired solutions without the need for meticulous reward design. While much work uses motion capture data or hand-crafted trajectories as the reference motion, relatively little work has explored the use of reference motions coming from model-based trajectory optimization. In this work, we investigate several design considerations that arise with such a framework, as demonstrated through four dynamic behaviours: trot, front hop, 180 backflip, and biped stepping. These are trained in simulation and transferred to a physical Solo 8 quadruped robot without further adaptation. In particular, we explore the space of feed-forward designs afforded by the trajectory optimizer to understand its impact on RL learning efficiency and sim-to-real transfer. These findings contribute to the long standing goal of producing robot controllers that combine the interpretability and precision of model-based optimization with the robustness that model-free RL-based controllers offer.
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
我们专注于开发Quadrupedal机器人节能控制器的问题。动物可以以不同的速度积极切换Gaits以降低其能量消耗。在本文中,我们设计了一个分层学习框架,其中独特的运动遗传仪和自然步态过渡自动出现,其能量最小化的简单奖励。我们使用进化策略来培训一个高级步态政策,指定每只脚的步态图案,而低级凸MPC控制器优化电机命令,以便机器人可以使用该步态图案以所需的速度行走。我们在四足机器人上测试我们的学习框架,并展示了自动步态过渡,从步行到小跑和飞行,因为机器人增加了速度。我们表明学习的等级控制器在广泛的运动速度范围内消耗的能量要少于基线控制器。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
深度强化学习是在不需要领域知识的不受控制环境中学习政策的有前途的方法。不幸的是,由于样本效率低下,深度RL应用主要集中在模拟环境上。在这项工作中,我们证明了机器学习算法和库的最新进步与精心调整的机器人控制器相结合,导致在现实世界中仅20分钟内学习四倍的运动。我们在几个室内和室外地形上评估了我们的方法,这些室内和室外地形对基于古典模型的控制器来说是具有挑战性的。我们观察机器人能够在所有这些地形上始终如一地学习步态。最后,我们在模拟环境中评估我们的设计决策。
translated by 谷歌翻译
训练深度强化学习(DRL)运动策略通常需要大量数据以融合到所需的行为。在这方面,模拟器提供了便宜而丰富的来源。对于成功的SIM到现实转移,通常采用详尽的设计方法,例如系统识别,动态随机化和域的适应性。作为替代方案,我们研究了一种简单的随机力注射策略(RFI),以在训练过程中扰动系统动力学。我们表明,随机力的应用使我们能够模拟动力学随机化。这使我们能够获得对系统动力学变化的强大运动策略。我们通过引入情节驱动偏移,进一步扩展了RFI,称为延长的随机力注射(ERFI)。我们证明,ERFI为系统质量提供的变化提供了额外的鲁棒性,平均提供了比RFI的性能提高61%。我们还表明,ERFI足以在两个不同的四足动物平台(Anymal C和Unitree A1)上成功进行SIM到真实传输,即使在户外环境中对不均匀的地形上的感知运动也是如此。
translated by 谷歌翻译
强化学习(RL)见证了四足动物的大步进展,在可靠的SIM转移到现实的政策转移方面持续进展。但是,重用另一个机器人的政策仍然是一个挑战,这可以节省重新培训的时间。在这项工作中,我们提出了一个用于零射击政策重新定位的框架,其中可以在不同形状和尺寸的机器人之间转移多种运动技能。新框架以系统整合RL和模型预测控制(MPC)的计划和控制管道为中心。计划阶段采用RL来生成动态合理的轨迹以及联系时间表,避免了接触序列优化的组合复杂性。然后,将这些信息用于播种MPC,以通过新的混合运动动力学(HKD)模型稳定和鲁棒性地推出策略,该模型隐含地优化了立足点位置。硬件结果表明能够将政策从A1和Laikago机器人转移到MIT MIT MINI CHEETAH机器人,而无需重新调整政策。
translated by 谷歌翻译
我们解决了动态环境中感知力的问题。在这个问题中,四足动物的机器人必须对环境混乱和移动的障碍物表现出强大而敏捷的步行行为。我们提出了一个名为Prelude的分层学习框架,该框架将感知力的问题分解为高级决策,以预测导航命令和低级步态生成以实现目标命令。在此框架中,我们通过在可进入手推车上收集的人类示范和使用加固学习(RL)的低级步态控制器(RL)上收集的人类示范中的模仿学习来训练高级导航控制器。因此,我们的方法可以从人类监督中获取复杂的导航行为,并从反复试验中发现多功能步态。我们证明了方法在模拟和硬件实验中的有效性。可以在https://ut-aut-autin-rpl.github.io/prelude上找到视频和代码。
translated by 谷歌翻译
惯性测量单元(IMU)在机器人研究中无处不在。它为机器人提供了姿势信息,以实现平衡和导航。但是,人类和动物可以在没有精确的方向或位置值的情况下感知其身体在环境中的运动。这种互动固有地涉及感知和动作之间的快速反馈回路。这项工作提出了一种端到端方法,该方法使用高维视觉观察和动作命令来训练视觉自模型进行腿部运动。视觉自模型学习机器人身体运动与地面纹理之间的空间关系从图像序列变化。我们证明机器人可以利用视觉自模型来实现机器人在训练过程中看不见的现实环境中的各种运动任务。通过我们提出的方法,机器人可以在没有IMU的情况下或在没有GPS或弱地磁场的环境中进行运动,例如该市的室内和Urban Canyons。
translated by 谷歌翻译
Learned locomotion policies can rapidly adapt to diverse environments similar to those experienced during training but lack a mechanism for fast tuning when they fail in an out-of-distribution test environment. This necessitates a slow and iterative cycle of reward and environment redesign to achieve good performance on a new task. As an alternative, we propose learning a single policy that encodes a structured family of locomotion strategies that solve training tasks in different ways, resulting in Multiplicity of Behavior (MoB). Different strategies generalize differently and can be chosen in real-time for new tasks or environments, bypassing the need for time-consuming retraining. We release a fast, robust open-source MoB locomotion controller, Walk These Ways, that can execute diverse gaits with variable footswing, posture, and speed, unlocking diverse downstream tasks: crouching, hopping, high-speed running, stair traversal, bracing against shoves, rhythmic dance, and more. Video and code release: https://gmargo11.github.io/walk-these-ways/
translated by 谷歌翻译
本文提出了针对四方的通用自适应控制器,可以将其部署为零射击到具有截然不同的质量,手臂长度和运动常数的四轮驱动器,并且还显示出对运行时未知干扰的快速适应。核心算法的想法是学习一个单一的策略,该策略不仅可以在测试时间在线适应无人机的干扰,还可以在同一框架中适用于机器人动力学和硬件。我们通过训练神经网络来估计机器人和环境参数的潜在表示,该参数用于调节控制器的行为,也表示为神经网络。我们专门训练两个网络进行模拟,目的是将四轮驱动器飞往目标位置并避免撞击地面。我们直接在模拟中训练了相同的控制器,而没有对两个四肢旋转器进行任何修改,其中质量,惯性差异差异,最大电动机速度最大为4次。此外,我们显示了四肢和惯性的突然和大型干扰(最高35.7%)的快速适应。我们在模拟和物理世界中进行了广泛的评估,在该评估中,我们的表现优于最先进的基于学习的自适应控制器和专门针对每个平台的传统PID控制器。视频结果可以在https://dz298.github.io/universal-drone-controller/上找到。
translated by 谷歌翻译
深度强化学习(Deep RL)已成为开发腿部机器人控制器的有效工具。但是,香草深RL通常需要大量的训练样本,并且对于实现强大的行为不可行。取而代之的是,研究人员通过合并人类专家的知识来调查一种新颖的政策架构,例如调节轨迹发生器(PMTG)的政策。该体系结构通过组合参数轨迹生成器(TG)和反馈策略网络来构建一个经常性的控制循环,以实现更强大的行为。为了利用人类专家的知识,但消除了耗时的互动教学,研究人员调查了一种新颖的架构,策略调节轨迹发生器(PMTG),该建筑通过结合参数轨迹生成器(TG)和反馈策略来构建经常性的控制循环网络使用直观的先验知识来实现​​更强大的行为。在这项工作中,我们建议通过使用接触感知的有限状态机器(FSM)代替TG来调整有限状态机(PM-FSM),从而为每条腿提供更灵活的控制。与TGS相比,FSM在每个腿部运动生成器上提供高级管理,并实现灵活的状态安排,这使得学习的行为不那么容易受到看不见的扰动或具有挑战性的地形。本发明为政策提供了明确的联系事件的概念,以协商意外的扰动。我们证明,在模拟机器人和真实的机器人上,所提出的架构可以在各种情况下(例如具有挑战性的地形或外部扰动)实现更强大的行为。补充视频可以在以下网址找到:https://youtu.be/78cbomqtkjq。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
自我模型是一种过程,例如动物或机器等代理商学会创建自己动态的预测模型。一旦被捕获,这种自模型就可以允许代理使用自我模型在内部计划和评估各种潜在行为,而不是使用昂贵的物理实验。在这里,我们量化了这种自模型对机器人的复杂性的好处。我们发现与直接学习基线相比,机器人拥有的自由度数量与自模型的附加值之间的R2 = 0.90相关性。这一结果可能有助于激发日益复杂的机器人系统中的自我建模,并阐明动物和人类自我模型的起源,并最终自我意识。
translated by 谷歌翻译