我们提出了基于能量的生成流网络(EB-GFN),这是一种用于高维离散数据的新型概率建模算法。基于生成流网络(GFLOWNETS)的理论,我们通过随机数据构建政策对生成过程进行建模,从而将昂贵的MCMC探索摊销为从Gflownet采样的固定动作中。我们展示了Gflownets如何在模式之间进行大致进行大型Gibbs采样以混合。我们提出了一个框架,以共同训练具有能量功能的Gflownet,以便Gflownet学会从能量分布中进行采样,而能量则以近似MLE目标学习,并从GFLOWNET中使用负样本。我们证明了EB-GFN对各种概率建模任务的有效性。代码可在https://github.com/zdhnarsil/eb_gfn上公开获取。
translated by 谷歌翻译
已经引入了生成流量网络(GFlowNETS)作为在主动学习背景下采样多样化候选的方法,具有培训目标,其使它们与给定奖励功能成比例地进行比例。在本文中,我们显示了许多额外的GFLOWN的理论特性。它们可用于估计联合概率分布和一些变量未指定的相应边际分布,并且特别感兴趣地,可以代表像集合和图形的复合对象的分布。 Gflownets摊销了通常通过计算昂贵的MCMC方法在单个但训练有素的生成通行证中进行的工作。它们还可用于估计分区功能和自由能量,给定子集(子图)的超标(超图)的条件概率,以及给定集合(图)的所有超标仪(超图)的边际分布。我们引入了熵和相互信息估计的变体,从帕累托前沿采样,与奖励最大化策略的连接,以及随机环境的扩展,连续动作和模块化能量功能。
translated by 谷歌翻译
生成流动网络(GFLOWNETS)是一种算法家族,用于训练在非均衡目标密度下离散对象的顺序采样器,并已成功用于各种概率建模任务。现有的Gflownets培训目标是国家本地的,或者是过渡的本地,或者在整个采样轨迹上传播奖励信号。我们认为,这些替代方案代表了梯度偏见变化权衡的相反目的,并提出了一种利用这种权衡以减轻其有害影响的方法。受到强化学习的TD($ \ lambda $)算法的启发,我们介绍了一个subtrajectory Balance或subtb($ \ lambda $),这是一个GFLOWNET培训目标,可以从不同长度的部分动作子序列中学习。我们表明,SubTB($ \ lambda $)会在先前研究和新环境中加速采样器的收敛,并在具有更长的动作序列和比以前的可能性更长的环境中培训Gflownets。我们还对随机梯度动力学进行了比较分析,阐明了GFLOWNET训练中的偏差变化权衡以及亚条件平衡的优势。
translated by 谷歌翻译
本文是关于从一系列动作中学习用于生成对象(如分子图)的随机策略的问题,使得生成对象的概率与该对象的给定的正奖励成比例。虽然标准返回最大化往往会收敛到单个返回最大化序列,但是有些情况我们希望在其中进行不同的高回报解决方案。例如,在可能的情况下,在黑盒功能优化中出现,每次都有很大的批次查询,其中批次应该多样化,例如,在新分子的设计中。人们还可以将其视为大致将能量函数转换为生成分布的问题。虽然MCMC方法可以实现这一点,但它们很昂贵,通常只执行本地探索。相反,培训生成政策在培训期间摊销搜索成本,并产生快速生成。使用时间差异学习的见解,基于生成过程作为流量网络的视图,提出Gflownet,使得可以处理不同轨迹可以产生相同的最终状态的棘手的情况,例如,有许多方法是顺序添加原子以产生一些分子图。我们将一组轨迹作为流程铸造并将流动一致性方程转换为学习目标,类似于钟人方程的铸造成时间差异方法。我们证明,拟议目标的任何全球最低限度都会产生一种从所需分布中采样的策略,并展示了Gflownet在一个简单的领域的提高性能和多样性,其中有许多模式到奖励功能以及分子合成任务。
translated by 谷歌翻译
在贝叶斯结构学习中,我们有兴趣从数据中推断出贝叶斯网络的定向无环图(DAG)结构。由于组合较大的样本空间,定义这种分布非常具有挑战性,并且通常需要基于MCMC的近似值。最近,已引入了一种新型的概率模型,称为生成流网络(GFLOWNETS),作为离散和复合对象(例如图形)生成建模的一般框架。在这项工作中,我们建议使用GFLOWNET作为MCMC的替代方案,以近似贝叶斯网络结构的后验分布,给定观测数据集。从该近似分布中生成样本DAG被视为一个顺序决策问题,在该问题中,该图是根据学习的过渡概率一次构造一个边缘的。通过对模拟和真实数据的评估,我们表明我们的方法称为dag-gflownet,可以准确地近似DAG,并且它可以与基于MCMC或变异推断的其他方法进行比较。
translated by 谷歌翻译
我们提出了离散的Langevin提案(DLP),这是一种简单且可扩展的基于梯度的建议,用于对复杂的高维离散分布进行采样。与基于Gibbs采样的方法相反,DLP能够单个步骤并行更新所有坐标,并且更改的幅度由步骤尺寸控制。这允许在高维且密切相关的变量的空间中进行廉价,有效的探索。我们通过证明其固定分布的渐近偏置对于对数季度分布而言是零,并且对于接近对数季度的分布而言,我们证明了DLP的效率为零。使用DLP,我们开发了几种采样算法的变体,包括未经调整的,大都市调整后的,随机和预处理版本。DLP在各种任务上都优于许多受欢迎的替代方案,包括ISING模型,受限的Boltzmann机器,基于深层的基于能量的模型,二进制神经网络和语言生成。
translated by 谷歌翻译
标准化流是可易处理的密度模型,可以近似复杂的目标分布,例如物理系统的玻尔兹曼分布。但是,当前的训练流量要么具有寻求模式的行为,要么使用昂贵的MCMC模拟事先生成的目标样本,要么使用具有很高差异的随机损失。为了避免这些问题,我们以退火重要性采样(AIS)增强流量,并最大程度地减少覆盖$ \ alpha $ -divergence的质量,并使用$ \ alpha = 2 $,从而最大程度地减少了重要性的重量差异。我们的方法是流动性Bootstrap(Fab),使用AIS在流动较差的目标区域中生成样品,从而促进了新模式的发现。我们以AIS的最小差异分布来定位,以通过重要性抽样来估计$ \ alpha $ -Divergence。我们还使用优先的缓冲区来存储和重复使用AIS样本。这两个功能显着提高了Fab的性能。我们将FAB应用于复杂的多模式目标,并表明我们可以在以前的方法失败的情况下非常准确地近似它们。据我们所知,我们是第一个仅使用非均衡目标密度学习丙氨酸二肽分子的玻璃体分布,而无需通过分子动力学(MD)模拟生成的样品:FAB与通过最大可能性训练更好的效果,而不是通过最大可能性产生的结果。在MD样品上使用100倍的目标评估。在重新获得重要权重的样品后,我们获得了与地面真相几乎相同的二面角的无偏直方图。
translated by 谷歌翻译
从非正规化概率分布的抽样是机器学习中的基本问题,包括贝叶斯建模,潜在因子推断和基于能源的模型训练。在几十年的研究之后,尽管收敛缓慢,但MCMC的变化仍然是抽样的默认方法。辅助神经模型可以学习加速MCMC,但训练额外模型的开销可能是禁止的。我们通过具有非牛顿势头的新的汉密尔顿动态提出了对这个问题的根本不同的方法。与MCMC蒙特卡洛等MCMC接近相比,不需要随机步骤。相反,在扩展状态空间中提出的确定性动态精确地对能量函数指定的目标分布,在ergodicity的假设下。或者,可以将动态解释为在没有训练的情况下对指定的能量模型进行采样的标准化流程。所提出的能量采样哈密尔顿(ESH)动态有一个简单的形式,可以用现有的颂歌解决,但我们推出了一个专业的求解器,它表现出更好的性能。 ESH Dynamics会收敛于其MCMC竞争对手的速度更快,更稳定地培训神经网络能量模型。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
我们提出了连续重复的退火流传输蒙特卡洛(CRAFT),该方法结合了顺序的蒙特卡洛(SMC)采样器(本身是退火重要性采样的概括)与使用归一化流量的变异推断。直接训练了归一化的流量,可用于使用KL差异进行每个过渡,以在退火温度之间运输。使用归一化流/SMC近似值估算了此优化目标。我们从概念上展示并使用多个经验示例,这些示例可以改善退火流运输蒙特卡洛(Arbel等,2021),并在其上建造,也可以在基于马尔可夫链蒙特卡洛(MCMC)基于基于的随机归一化流(Wu等人。2020)。通过将工艺纳入粒子MCMC中,我们表明,这种学识渊博的采样器可以在具有挑战性的晶格场理论示例中获得令人印象深刻的准确结果。
translated by 谷歌翻译
最近,一个本地平衡(LB)的样本家族在离散空间中的采样和学习能量模型(EBM)方面表现出色。但是,对这一成功的理论理解是有限的。在这项工作中,我们展示了LB功能如何引起与离散空间中Wasserstein梯度流相对应的LB动力学。从第一原则来看,先前的LB采样器就可以看作是LB动力学相对于锤距的离散化。基于此观察结果,我们提出了一种新算法,即局部平衡跳跃(LBJ),通过将LB动力学相对于仿真时间离散。结果,LBJ具有位置依赖性的“速度”,使其可以提出更大距离的建议。此外,LBJ将每个维度分解为独立的子过程,从而实现方便的并行实现。我们证明了LBJ在各种二进制和分类分布中的采样和学习方面的优势。
translated by 谷歌翻译
Energy based models (EBMs) are appealing due to their generality and simplicity in likelihood modeling, but have been traditionally difficult to train. We present techniques to scale MCMC based EBM training on continuous neural networks, and we show its success on the high-dimensional data domains of ImageNet32x32, ImageNet128x128, CIFAR-10, and robotic hand trajectories, achieving better samples than other likelihood models and nearing the performance of contemporary GAN approaches, while covering all modes of the data. We highlight some unique capabilities of implicit generation such as compositionality and corrupt image reconstruction and inpainting. Finally, we show that EBMs are useful models across a wide variety of tasks, achieving state-of-the-art out-of-distribution classification, adversarially robust classification, state-of-the-art continual online class learning, and coherent long term predicted trajectory rollouts.
translated by 谷歌翻译
We propose a method for learning expressive energy-based policies for continuous states and actions, which has been feasible only in tabular domains before. We apply our method to learning maximum entropy policies, resulting into a new algorithm, called soft Q-learning, that expresses the optimal policy via a Boltzmann distribution. We use the recently proposed amortized Stein variational gradient descent to learn a stochastic sampling network that approximates samples from this distribution. The benefits of the proposed algorithm include improved exploration and compositionality that allows transferring skills between tasks, which we confirm in simulated experiments with swimming and walking robots. We also draw a connection to actorcritic methods, which can be viewed performing approximate inference on the corresponding energy-based model.
translated by 谷歌翻译
我们介绍了本地自动平衡采样器(LSB),这是一种本地马尔可夫链蒙特卡洛(MCMC)方法,用于在纯离散域中采样,该方法能够自主适应目标分布并减少收敛所需的目标评估数量。LSB基于(i)局部平衡建议的参数化,(ii)基于相互信息的新提出的目标函数和(iii)自平衡学习过程,该过程最大程度地降低了提议的目标以更新提案参数。基于能量的模型和马尔可夫网络的实验表明,与最近的本地MCMC采样器相比,LSB使用较少数量的Oracle分布收敛。
translated by 谷歌翻译
离线增强学习(RL)将经典RL算法的范式扩展到纯粹从静态数据集中学习,而无需在学习过程中与基础环境进行交互。离线RL的一个关键挑战是政策培训的不稳定,这是由于离线数据的分布与学习政策的未结束的固定状态分配之间的不匹配引起的。为了避免分配不匹配的有害影响,我们将当前政策的未静置固定分配正规化在政策优化过程中的离线数据。此外,我们训练动力学模型既实施此正规化,又可以更好地估计当前策略的固定分布,从而减少了分布不匹配引起的错误。在各种连续控制的离线RL数据集中,我们的方法表示竞争性能,从而验证了我们的算法。该代码公开可用。
translated by 谷歌翻译
基于能量的模型(EBMS)最近成功地代表了少量图像的复杂分布。然而,对它们的抽样需要昂贵的马尔可夫链蒙特卡罗(MCMC)迭代在高维像素空间中缓慢混合。与EBMS不同,变形AutoEncoders(VAES)快速生成样本,并配备潜在的空间,使得数据歧管的快速遍历。然而,VAE倾向于将高概率密度分配到实际数据分布之外的数据空间中的区域,并且经常在产生清晰图像时失败。在本文中,我们提出了VAE的一个共生组成和ebm的vaebm,提供了两个世界的eBM。 VAEBM使用最先进的VAE捕获数据分布的整体模式结构,它依赖于其EBM组件,以明确地从模型中排除非数据样区域并优化图像样本。此外,VAEBM中的VAE组件允许我们通过在VAE的潜空间中重新处理它们来加速MCMC更新。我们的实验结果表明,VAEBM在几个基准图像数据集上以大量边距开辟了最先进的VAES和EBMS。它可以产生高于256 $ \倍的高质量图像,使用短MCMC链。我们还证明了VAEBM提供了完整的模式覆盖范围,并在分配外检测中表现良好。源代码可在https://github.com/nvlabs/vaebm上获得
translated by 谷歌翻译
While reinforcement learning algorithms provide automated acquisition of optimal policies, practical application of such methods requires a number of design decisions, such as manually designing reward functions that not only define the task, but also provide sufficient shaping to accomplish it. In this paper, we view reinforcement learning as inferring policies that achieve desired outcomes, rather than as a problem of maximizing rewards. To solve this inference problem, we establish a novel variational inference formulation that allows us to derive a well-shaped reward function which can be learned directly from environment interactions. From the corresponding variational objective, we also derive a new probabilistic Bellman backup operator and use it to develop an off-policy algorithm to solve goal-directed tasks. We empirically demonstrate that this method eliminates the need to hand-craft reward functions for a suite of diverse manipulation and locomotion tasks and leads to effective goal-directed behaviors.
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
基于能量的模型(EBMS)提供灵活的分布参数化。然而,由于难以应变的分隔功能,它们通常通过对比发散培训,以获得最大似然估计。在本文中,我们提出了伪球形对比偏差(PS-CD)来概括eBM的最大似然学习。 PS-CD源自严格适当的同质评分规则系列的最大化,这避免了难以处理分区功能的计算,并提供了包括对比分歧的广义学习目标作为特殊情况。此外,PS-CD允许我们灵活地选择各种学习目标,以便在没有额外的计算成本或变分性最低限度优化的情况下培训EBM。关于合成数据和常用图像数据集的提出方法和广泛实验的理论分析证明了PS-CD的有效性和建模灵活性,以及​​其对数据污染的鲁棒性,从而显示出其最大可能性和$ F $的优势 - ebms。
translated by 谷歌翻译
Perturb-and-MAP offers an elegant approach to approximately sample from an energy-based model (EBM) by computing the maximum-a-posteriori (MAP) configuration of a perturbed version of the model. Sampling in turn enables learning. However, this line of research has been hindered by the general intractability of the MAP computation. Very few works venture outside tractable models, and when they do, they use linear programming approaches, which as we show, have several limitations. In this work, we present perturb-and-max-product (PMP), a parallel and scalable mechanism for sampling and learning in discrete EBMs. Models can be arbitrary as long as they are built using tractable factors. We show that (a) for Ising models, PMP is orders of magnitude faster than Gibbs and Gibbs-with-Gradients (GWG) at learning and generating samples of similar or better quality; (b) PMP is able to learn and sample from RBMs; (c) in a large, entangled graphical model in which Gibbs and GWG fail to mix, PMP succeeds.Preprint. Under review.
translated by 谷歌翻译