复发性神经网络传感器(RNN-T)是一个端到端语音识别框架,将输入声帧转换为字符序列。 RNN-T的最先进的编码器网络是构象异构体,它可以通过其卷积和自我发项层有效地对局部全球环境信息进行建模。尽管构型RNN-T已显示出出色的性能,但在从同一域中绘制火车和测试数据的环境中,大多数研究都已得到验证。尚未对构型RNN-T的域不匹配问题进行深入研究,这对于产品级别的语音识别系统来说是一个重要问题。在这项研究中,我们确定构象异构体中完全连接的自我发项层引起了高缺失误差,特别是在长形的外域话语中。为了解决这个问题,我们为基于构象体的编码网络引入了稀疏的自发层,该层可以通过修剪大多数内域拟合的全球连接来利用本地和广义的全球信息。此外,我们提出了一种国家重置方法,用于对预测网络的概括来应对长形式的话语。与完全连接的基于自我发项层的构象异构体相比,我们将提出的方法应用于外域测试,降低了27.6%的相对特征错误率(CER)。
translated by 谷歌翻译
本文提出了代币级别的序列化输出训练(T-SOT),这是流式传输多对话者自动语音识别(ASR)的新型框架。与使用多个输出分支的现有流媒体多对话者ASR模型不同,T-SOT模型只有一个单个输出分支,该分支基于其排放时间生成多个扬声器的识别令牌(例如,单词,子字)。引入了指示“虚拟”输出通道更改的特殊令牌,以跟踪重叠的话语。与先前的流媒体ASR模型相比,T-SOT模型具有较低的推理成本和更简单的模型体系结构的优点。此外,在我们对LibrisPeechMix和Librics数据集的实验中,基于T-SOT的变压器换能器模型可实现最新的单词错误率,从而有很大的差距。对于非重叠的语音,T-SOT模型在精度和计算成本方面与单调的ASR模型相提并论,为单个单词和多对话者方案部署一个模型打开了大门。
translated by 谷歌翻译
在长时间到数小时的长时间话语中,提高端到端ASR模型的性能是语音识别的持续挑战。一个常见的解决方案是使用单独的语音活动检测器(VAD)事先将音频分割,该声音活动检测器(VAD)纯粹基于声音/非语音信息来决定段边界位置。但是,VAD细分器可能是现实世界语音的最佳选择,例如,一个完整的句子应该整体上可能包含犹豫(“设置... 5点钟的警报”) 。我们建议用端到端的ASR模型替换VAD,能够以流方式预测段边界,从而使细分决定不仅在更好的声学特征上,而且还可以在解码文本的语义特征上进行,并具有可忽略的额外功能计算。在现实世界长音频(YouTube)的实验中,长度长达30分钟,我们证明了相对改善的8.5%,并且与VAD段基线相比,中位段延迟潜伏期的中位数延迟延迟减少了250毫秒。 - ART构象体RNN-T模型。
translated by 谷歌翻译
最近,基于注意的编码器 - 解码器(AED)模型对多个任务的端到端自动语音识别(ASR)显示了高性能。在此类模型中解决了过度控制,本文介绍了轻松关注的概念,这是一种简单地逐渐注入对训练期间对编码器 - 解码器注意重量的统一分配,其易于用两行代码实现。我们调查轻松关注跨不同AED模型架构和两个突出的ASR任务,华尔街日志(WSJ)和LibRisPeech的影响。我们发现,在用外部语言模型解码时,随着宽松的注意力训练的变压器始终如一地始终如一地遵循标准基线模型。在WSJ中,我们为基于变压器的端到端语音识别设置了一个新的基准,以3.65%的单词错误率,最优于13.1%的相对状态,同时仅引入单个HyperParameter。
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
在本文中,我们在多方会议场景中对说话者的自动语音识别(SA-ASR)进行了比较研究,这一主题越来越关注丰富的转录。具体而言,本研究评估了三种方法。第一种方法,即FD-SOT,由框架级诊断模型组成,以识别说话者和多对话者ASR以识别话语。通过对齐诊断结果和公认的假设,可以获得说话者归因的转录。但是,由于模块化的独立性,这种对齐策略可能会遭受错误的时间戳,从而严重阻碍了模型性能。因此,我们提出了第二种方法WD-SOT,以通过引入单词水平诊断模型来解决对齐误差,从而可以摆脱这种时间戳对齐依赖性。为了进一步缓解对齐问题,我们提出了第三种方法TS-ASR,该方法可以训练目标扬声器分离模块和ASR模块。通过比较每种SA-ASR方法的各种策略,对真实会议场景语料库的实验结果,AlimeTing,表明WD-SOT方法可在平均扬声器依赖性角色错误率(SD-CER)相对降低10.7%,与之相比FD-SOT方法。此外,TS-ASR方法还优于FD-SOT方法,并带来16.5%的相对平均SD-CER减少。
translated by 谷歌翻译
事实证明,构象异构体在许多语音处理任务中都是有效的。它结合了使用卷积和使用自我注意的全球依赖性提取本地依赖的好处。受此启发,我们提出了一个更灵活,可解释和可自定义的编码器替代方案,分支机构,并在端到端语音处理中对各种远程依赖关系进行建模。在每个编码器层中,一个分支都采用自我注意事项或其变体来捕获远程依赖性,而另一个分支则利用带有卷积门控(CGMLP)的MLP模块来提取局部关系。我们对几种语音识别和口语理解基准进行实验。结果表明,我们的模型优于变压器和CGMLP。它还与构象异构体获得的最先进结果相匹配。此外,由于两分支结构,我们展示了减少计算的各种策略,包括在单个训练有素的模型中具有可变的推理复杂性的能力。合并分支的权重表明如何在不同层中使用本地和全球依赖性,从而使模型设计受益。
translated by 谷歌翻译
以前的研究已经证实了利用明晰度信息达到改善的语音增强(SE)性能的有效性。通过使用铰接特征的地点/方式增强原始声学特征,可以引导SE过程考虑执行增强时输入语音的剖视特性。因此,我们认为关节属性的上下文信息应包括有用的信息,并可以进一步利用不同的语言。在这项研究中,我们提出了一个SE系统,通过优化英语和普通话的增强演讲中的上下文清晰度信息来提高其性能。我们通过联合列车与端到端的自动语音识别(E2E ASR)模型进行联合列车,预测广播序列(BPC)而不是单词序列的序列。同时,开发了两种培训策略,以基于基于BPC的ASR:多任务学习和深度特征培训策略来培训SE系统。 Timit和TMhint DataSet上的实验结果证实了上下文化学信息促进了SE系统,以实现比传统声学模型(AM)更好的结果。此外,与用单声道ASR培训的另一SE系统相比,基于BPC的ASR(提供上下文化学信息)可以在不同的信噪比(SNR)下更有效地改善SE性能。
translated by 谷歌翻译
自我监督学习(SSL)在语音识别方面取得了巨大的成功,而有限的探索已尝试完成其他语音处理任务。由于语音信号包含多方面的信息,包括说话者身份,副语言学,口语内容等,学习所有语音任务的通用表示都具有挑战性。为了解决该问题,我们提出了一个新的预培训模型WAVLM,以解决全堆栈的下游语音任务。 Wavlm共同学习了蒙面的语音预测和预训练。通过这种方式,WAVLM不仅可以通过掩盖的语音预测来保持语音内容建模能力,而且还可以通过语音denoing来提高非ASR任务的潜力。此外,WAVLM还采用封闭式的变压器结构的封闭相对位置偏置,以更好地捕获输入语音的序列排序。我们还将培训数据集从60k小时扩展到94K小时。 WAVLM大型在精湛的基准上实现了最先进的性能,并在其代表性基准上为各种语音处理任务带来了重大改进。代码和预培训模型可在https://aka.ms/wavlm上找到。
translated by 谷歌翻译
会话言论通常在话语水平上以松散的句法结构体现,但同时表现出连续话语的局部相干关系。事先工作已经表明,使用经常性神经网络或长短期存储器语言模型(LM)捕获较长的上下文信息可能遭受最近的偏置,而不是在远程上下文中。为了捕获词语和跨越话语之间的长期语义互动,我们提出了对话语音的自动语音识别(ASR)中语言建模的不同谈话历史融合方法。此外,引入了一种新的函数融合机制,该机制被引入熔断器并利用当前话语的声学嵌入和其相应的对话历史的语义含量以协作方式。为了塑造我们的想法,我们将ASR N-Best假设救援人员框架作为预测问题,利用BERT,一个标志性的预训练LM,作为成分车辆,以便于从给定的N最佳假设列表中选择Oracle假设。在AMI基准数据集上进行的实证实验似乎展示了我们对某些目前的线上的方法相关的可行性和功效。
translated by 谷歌翻译
语言模型(LMS)显着提高端到端模型(E2E)模型在训练过程中很少见的单词的识别准确性,当时在浅融合或重新恢复设置中。在这项工作中,我们介绍了LMS在判别培训框架中学习混合自动回旋传感器(HAT)模型的研究,以减轻有关使用LMS的训练与推理差距。对于浅融合设置,我们在假设生成和损失计算过程中都使用LMS,而LM感知的MWER训练模型可实现10 \%的相对改进,比用标准MWER在语音搜索测试集中培训的模型相对改进,其中包含稀有单词。对于重新设置,我们学会了一个小型神经模块,以数据依赖性方式产生串联的融合权重。该模型与常规MWER训练的模型相同,但无需清除融合重量。
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
最近,我们提供了Wenet,这是一种面向生产的端到端语音识别工具包,它引入了统一的两通道(U2)框架和内置运行时,以解决单个中的流和非流传输模式。模型。为了进一步提高ASR性能并促进各种生产要求,在本文中,我们提出了Wenet 2.0,并提供四个重要的更新。 (1)我们提出了U2 ++,这是一个带有双向注意解码器的统一的两次通行框架,其中包括通过左右注意力解码器的未来上下文信息,以提高共享编码器的代表性和在夺回阶段的表现。 (2)我们将基于N-Gram的语言模型和基于WFST的解码器引入WENET 2.0,从而促进了在生产方案中使用丰富的文本数据。 (3)我们设计了一个统一的上下文偏见框架,该框架利用特定于用户的上下文(例如联系人列表)为生产提供快速适应能力,并提高了使用LM和没有LM场景的ASR准确性。 (4)我们设计了一个统一的IO,以支持大规模数据进行有效的模型培训。总而言之,全新的WENET 2.0可在各种Corpora上的原始WENET上取得高达10 \%的相对识别性能提高,并提供了一些重要的以生产为导向的功能。
translated by 谷歌翻译
在启用语音的应用程序中,一个预定的热词在同时用来激活设备以便进行查询。 toavoid重复一个热词,我们提出了一个端到端的流(E2E)打算查询检测器,该查询检测器识别向设备指向的发音,并滤除针对设备的其他发出内容。提出的方法将预期的查询检测器置于E2E模型中,该模型将语音识别的不同组件折叠成一个神经网络。E2E对台面解码和预期的查询检测进行建模,也使我们可以基于早期的部分偏置检测结果, ,这对于减少潜伏期和使系统响应很重要。我们证明,与独立的预期检测器相比,检测准确性和600个MSLATENCE的相对相对改善的相对提高一级误差率(EER)的相对提高了22%。在我们的实验中,提出的模型检测用户正在用用户开始讲话后,用8.7%的Eerwithin与设备进行对话。
translated by 谷歌翻译
由于无标记的文本和语音数据的广泛可用性,最近基于仅音频数据的仅文本和半监督培训已广受欢迎。在这项工作中,我们建议将纯文本和半监督培训纳入基于注意力的审议模型。通过将纯文本数据合并到培训审议文本编码器的变压器(BERT)的双向编码器表示中,以及使用联合声学和文本解码器(JATD)和半诉讼程序的大规模文本到语音和纯音频和音频话语培训,与基线审议相比,我们的各种任务减少了4%-12%。与最先进的语言模型(LM)纠正方法相比,审议模型将Google语音搜索降低了11%。我们表明,与具有合理的终端潜伏期的最先进的LM委员相比,审议模型还获得了正面的人类并排评估。
translated by 谷歌翻译
最近,卷积增强的变压器(构象异构体)在自动语音识别(ASR)中显示出令人鼓舞的结果,表现优于先前发表的最佳变压器传感器。在这项工作中,我们认为编码器和解码器中每个块的输出信息并不完全包容,换句话说,它们的输出信息可能是互补的。我们研究如何以参数效率的方式利用每个块的互补信息,并且可以预期这可能会导致更强的性能。因此,我们提出了刻板的变压器以进行语音识别,名为BlockFormer。我们已经实现了两个块集合方法:块输出的基本加权总和(基本WSBO),以及挤压和激气模块到块输出的加权总和(SE-WSBO)。实验已经证明,阻滞剂在Aishell-1上大大优于基于最新的构象模型,我们的模型在不使用语言模型的情况下达到了4.35 \%的CER,并且在4.10 \%上具有外部语言模型的4.10 \%测试集。
translated by 谷歌翻译
经常性的神经网络传感器(RNN-T)目标在建立当今最好的自动语音识别(ASR)系统中发挥着重要作用。与连接员时间分类(CTC)目标类似,RNN-T损失使用特定规则来定义生成一组对准以形成用于全汇训练的格子。但是,如果这些规则是最佳的,则在很大程度上未知,并且会导致最佳ASR结果。在这项工作中,我们介绍了一种新的传感器目标函数,它概括了RNN-T丢失来接受标签的图形表示,从而提供灵活和有效的框架来操纵训练格子,例如用于限制对齐或研究不同的转换规则。我们证明,与标准RNN-T相比,具有CTC样格子的基于传感器的ASR实现了更好的结果,同时确保了严格的单调对齐,这将允许更好地优化解码过程。例如,所提出的CTC样换能器系统对于测试 - LibrisPeech的其他条件,实现了5.9%的字误差率,相对于基于等效的RNN-T系统的提高,对应于4.8%。
translated by 谷歌翻译
统一的流和非流式的双通(U2)用于语音识别的端到端模型在流传输能力,准确性,实时因素(RTF)和延迟方面表现出很大的性能。在本文中,我们呈现U2 ++,U2的增强版本,进一步提高了准确性。 U2 ++的核心思想是在训练中同时使用标签序列的前向和向后信息来学习更丰富的信息,并在解码时结合前向和后向预测以提供更准确的识别结果。我们还提出了一种名为SPECSUB的新数据增强方法,以帮助U2 ++模型更准确和强大。我们的实验表明,与U2相比,U2 ++在训练中显示了更快的收敛,更好地鲁棒性对解码方法,以及U2上的一致5 \%-8 \%字错误率降低增益。在Aishell-1的实验中,我们通过u2 ++实现了一个4.63 \%的字符错误率(cer),其中没有流媒体设置和5.05 \%,具有320ms延迟的流设置。据我们所知,5.05 \%是Aishell-1测试集上的最佳发布的流媒体结果。
translated by 谷歌翻译
上下文偏见是端到端自动语音识别(ASR)系统的一项重要且具有挑战性现有方法主要包括上下文lm偏置,并将偏置编码器添加到端到端的ASR模型中。在这项工作中,我们介绍了一种新颖的方法,通过在端到端ASR系统之上添加上下文拼写校正模型来实现上下文偏见。我们将上下文信息与共享上下文编码器合并到序列到序列拼写校正模型中。我们提出的模型包括两种不同的机制:自动回旋(AR)和非自动回旋(NAR)。我们提出过滤算法来处理大尺寸的上下文列表以及性能平衡机制,以控制模型的偏置程度。我们证明所提出的模型是一种普遍的偏见解决方案,它是对域的不敏感的,可以在不同的情况下采用。实验表明,所提出的方法在ASR系统上的相对单词错误率(WER)降低多达51%,并且优于传统偏见方法。与AR溶液相比,提出的NAR模型可将模型尺寸降低43.2%,并将推断加速2.1倍。
translated by 谷歌翻译
将作为上下文知识获得的偏见单词合并对于许多自动语音识别(ASR)应用至关重要。本文建议将图形神经网络(GNN)编码用于端到端上下文ASR中的树受限指针生成器(TCPGEN)组件。通过用基于树的GNN编码前缀树中的有偏见的单词,可以在每个树节点上通过合并有关其扎根的树枝上的所有文字的信息来实现端到端ASR解码中未来文字的lookahead,从而实现。允许更准确地预测偏见单词的生成概率。使用模拟的偏置任务在Librispeech语料库上评估系统,并通过提出一种新颖的视觉接地上下文ASR管道,在AMI语料库上评估了系统,该管道从每次会议旁边的幻灯片中提取有偏见的单词。结果表明,与原始TCPGEN相比,具有GNN编码的TCPGEN对偏置单词的相对减少了约15%,而解码的计算成本的增加可忽略不计。
translated by 谷歌翻译