基于图像检索的应用需要在中间空间中进行编辑和关联,这些空间代表了诸如对象及其关系的高级概念,而不是密集的像素级表示,例如RGB图像或语义标签图。我们专注于这样的表示形式,场景图,并提出了一个新颖的场景扩展任务,在其中我们通过添加新节点(对象)和相应的关系来丰富输入种子图。为此,我们将场景图扩展作为一个顺序预测任务,涉及首先预测新节点,然后预测图中新预测的节点和以前的节点之间的一系列关系的多个步骤。我们为观察到的图表提出了一个测序策略,该图形保留了节点之间的聚类模式。此外,我们利用外部知识来训练我们的图生成模型,从而对节点预测进行更大的概括。由于现有的最大平均差异(MMD)指标的效率低下,用于评估节点之间的预测关系(对象),因此我们设计了新颖的指标,可以全面评估预测关系的不同方面。我们对视觉基因组和VRD数据集进行了广泛的实验,以使用标准的基于MMD的指标和我们建议的指标来评估扩展的场景图。我们观察到,与GraphRNN这样的基线方法,通过我们的方法,GEM,GEMS生成的图形更好地表示场景图的真实分布。
translated by 谷歌翻译
场景图是一个场景的结构化表示,可以清楚地表达场景中对象之间的对象,属性和关系。随着计算机视觉技术继续发展,只需检测和识别图像中的对象,人们不再满足。相反,人们期待着对视觉场景更高的理解和推理。例如,给定图像,我们希望不仅检测和识别图像中的对象,还要知道对象之间的关系(视觉关系检测),并基于图像内容生成文本描述(图像标题)。或者,我们可能希望机器告诉我们图像中的小女孩正在做什么(视觉问题应答(VQA)),甚至从图像中移除狗并找到类似的图像(图像编辑和检索)等。这些任务需要更高水平的图像视觉任务的理解和推理。场景图只是场景理解的强大工具。因此,场景图引起了大量研究人员的注意力,相关的研究往往是跨模型,复杂,快速发展的。然而,目前没有对场景图的相对系统的调查。为此,本调查对现行场景图研究进行了全面调查。更具体地说,我们首先总结了场景图的一般定义,随后对场景图(SGG)和SGG的发电方法进行了全面和系统的讨论,借助于先验知识。然后,我们调查了场景图的主要应用,并汇总了最常用的数据集。最后,我们对场景图的未来发展提供了一些见解。我们相信这将是未来研究场景图的一个非常有帮助的基础。
translated by 谷歌翻译
已经为图形生成模型提出了广泛的模型,需要采用有效的方法来评估其质量。到目前为止,大多数技术都使用基于子图计数的传统指标或随机初始化的图形神经网络(GNN)的表示。我们建议使用对比训练的GNN而不是随机GNN的表示形式,并表明这给出了更可靠的评估指标。但是,传统方法和基于GNN的方法都没有主导另一方:我们举例说明每种方法无法区分的示例。我们证明了图形子结构网络(GSN),以一种结合两种方法的方式,可以更好地区分图形数据集之间的距离。
translated by 谷歌翻译
深度学习技术导致了通用对象检测领域的显着突破,近年来产生了很多场景理解的任务。由于其强大的语义表示和应用于场景理解,场景图一直是研究的焦点。场景图生成(SGG)是指自动将图像映射到语义结构场景图中的任务,这需要正确标记检测到的对象及其关系。虽然这是一项具有挑战性的任务,但社区已经提出了许多SGG方法并取得了良好的效果。在本文中,我们对深度学习技术带来了近期成就的全面调查。我们审查了138个代表作品,涵盖了不同的输入方式,并系统地将现有的基于图像的SGG方法从特征提取和融合的角度进行了综述。我们试图通过全面的方式对现有的视觉关系检测方法进行连接和系统化现有的视觉关系检测方法,概述和解释SGG的机制和策略。最后,我们通过深入讨论当前存在的问题和未来的研究方向来完成这项调查。本调查将帮助读者更好地了解当前的研究状况和想法。
translated by 谷歌翻译
Scene graphs provide a rich, structured representation of a scene by encoding the entities (objects) and their spatial relationships in a graphical format. This representation has proven useful in several tasks, such as question answering, captioning, and even object detection, to name a few. Current approaches take a generation-by-classification approach where the scene graph is generated through labeling of all possible edges between objects in a scene, which adds computational overhead to the approach. This work introduces a generative transformer-based approach to generating scene graphs beyond link prediction. Using two transformer-based components, we first sample a possible scene graph structure from detected objects and their visual features. We then perform predicate classification on the sampled edges to generate the final scene graph. This approach allows us to efficiently generate scene graphs from images with minimal inference overhead. Extensive experiments on the Visual Genome dataset demonstrate the efficiency of the proposed approach. Without bells and whistles, we obtain, on average, 20.7% mean recall (mR@100) across different settings for scene graph generation (SGG), outperforming state-of-the-art SGG approaches while offering competitive performance to unbiased SGG approaches.
translated by 谷歌翻译
We propose a novel scene graph generation model called Graph R-CNN, that is both effective and efficient at detecting objects and their relations in images. Our model contains a Relation Proposal Network (RePN) that efficiently deals with the quadratic number of potential relations between objects in an image. We also propose an attentional Graph Convolutional Network (aGCN) that effectively captures contextual information between objects and relations. Finally, we introduce a new evaluation metric that is more holistic and realistic than existing metrics. We report state-of-the-art performance on scene graph generation as evaluated using both existing and our proposed metrics.
translated by 谷歌翻译
基于深度学习的图生成方法具有显着的图形数据建模能力,从而使它们能够解决广泛的现实世界问题。使这些方法能够在生成过程中考虑不同的条件,甚至通过授权它们生成满足所需标准的新图形样本来提高其有效性。本文提出了一种条件深图生成方法,称为SCGG,该方法考虑了特定类型的结构条件。具体而言,我们提出的SCGG模型采用初始子图,并自动重新收获在给定条件子结构之上生成新节点及其相应的边缘。 SCGG的体系结构由图表表示网络和自动回归生成模型组成,该模型是端到端训练的。使用此模型,我们可以解决图形完成,这是恢复缺失的节点及其相关的部分观察图的猖and固有的困难问题。合成数据集和现实世界数据集的实验结果证明了我们方法的优势与最先进的基准相比。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
We investigate the problem of producing structured graph representations of visual scenes. Our work analyzes the role of motifs: regularly appearing substructures in scene graphs. We present new quantitative insights on such repeated structures in the Visual Genome dataset. Our analysis shows that object labels are highly predictive of relation labels but not vice-versa. We also find that there are recurring patterns even in larger subgraphs: more than 50% of graphs contain motifs involving at least two relations. Our analysis motivates a new baseline: given object detections, predict the most frequent relation between object pairs with the given labels, as seen in the training set. This baseline improves on the previous state-of-the-art by an average of 3.6% relative improvement across evaluation settings. We then introduce Stacked Motif Networks, a new architecture designed to capture higher order motifs in scene graphs that further improves over our strong baseline by an average 7.1% relative gain. Our code is available at github.com/rowanz/neural-motifs.
translated by 谷歌翻译
考虑到RDF三元组的集合,RDF到文本生成任务旨在生成文本描述。最先前的方法使用序列到序列模型或使用基于图形的模型来求解此任务以编码RDF三维并生成文本序列。然而,这些方法未能明确模拟RDF三元组之间的本地和全球结构信息。此外,以前的方法也面临了生成文本的低信任问题的不可忽略的问题,这严重影响了这些模型的整体性能。为了解决这些问题,我们提出了一种组合两个新的图形增强结构神经编码器的模型,共同学习输入的RDF三元组中的本地和全局结构信息。为了进一步改进文本忠诚,我们创新地根据信息提取(即)引进了强化学习(RL)奖励。我们首先使用佩带的IE模型从所生成的文本中提取三元组,并将提取的三级的正确数量视为额外的RL奖励。两个基准数据集上的实验结果表明,我们所提出的模型优于最先进的基线,额外的加强学习奖励确实有助于改善所生成的文本的忠诚度。
translated by 谷歌翻译
Understanding a visual scene goes beyond recognizing individual objects in isolation. Relationships between objects also constitute rich semantic information about the scene. In this work, we explicitly model the objects and their relationships using scene graphs, a visually-grounded graphical structure of an image. We propose a novel endto-end model that generates such structured scene representation from an input image. The model solves the scene graph inference problem using standard RNNs and learns to iteratively improves its predictions via message passing. Our joint inference model can take advantage of contextual cues to make better predictions on objects and their relationships. The experiments show that our model significantly outperforms previous methods for generating scene graphs using Visual Genome dataset and inferring support relations with NYU Depth v2 dataset.
translated by 谷歌翻译
时间图代表实体之间的动态关系,并发生在许多现实生活中的应用中,例如社交网络,电子商务,通信,道路网络,生物系统等。他们需要根据其生成建模和表示学习的研究超出与静态图有关的研究。在这项调查中,我们全面回顾了近期针对处理时间图提出的神经时间依赖图表的学习和生成建模方法。最后,我们确定了现有方法的弱点,并讨论了我们最近发表的论文提格的研究建议[24]。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
Scene graph generation from images is a task of great interest to applications such as robotics, because graphs are the main way to represent knowledge about the world and regulate human-robot interactions in tasks such as Visual Question Answering (VQA). Unfortunately, its corresponding area of machine learning is still relatively in its infancy, and the solutions currently offered do not specialize well in concrete usage scenarios. Specifically, they do not take existing "expert" knowledge about the domain world into account; and that might indeed be necessary in order to provide the level of reliability demanded by the use case scenarios. In this paper, we propose an initial approximation to a framework called Ontology-Guided Scene Graph Generation (OG-SGG), that can improve the performance of an existing machine learning based scene graph generator using prior knowledge supplied in the form of an ontology (specifically, using the axioms defined within); and we present results evaluated on a specific scenario founded in telepresence robotics. These results show quantitative and qualitative improvements in the generated scene graphs.
translated by 谷歌翻译
连接视觉和语言在生成智能中起着重要作用。因此,已经致力于图像标题的大型研究工作,即用句法和语义有意义的句子描述图像。从2015年开始,该任务通常通过由Visual Encoder组成的管道和文本生成的语言模型来解决任务。在这些年来,两种组件通过对象区域,属性,介绍多模态连接,完全关注方法和伯特早期融合策略的利用而显着发展。但是,无论令人印象深刻的结果,图像标题的研究还没有达到结论性答案。这项工作旨在提供图像标题方法的全面概述,从视觉编码和文本生成到培训策略,数据集和评估度量。在这方面,我们量化地比较了许多相关的最先进的方法来确定架构和培训策略中最有影响力的技术创新。此外,讨论了问题的许多变体及其开放挑战。这项工作的最终目标是作为理解现有文献的工具,并突出显示计算机视觉和自然语言处理的研究领域的未来方向可以找到最佳的协同作用。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton. The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases. In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features. We follow the strategy of implicit distribution modelling via generative adversarial network (GAN) combined with permutation equivariant message passing architecture operating over the sets of nodes and edges. This enables generating the feature vectors of all the graph objects in one go (in 2 phases) as opposed to a much slower one-by-one generations of sequential models, prevents the need for expensive graph matching procedures usually needed for likelihood-based generative models, and uses efficiently the network capacity by being insensitive to the particular node ordering in the graph representation. To the best of our knowledge, this is the first method that models the feature distribution along the graph skeleton allowing for generations of annotated graphs with user specified structures. Our experiments demonstrate the ability of our model to learn complex structured distributions through quantitative evaluation over three annotated graph datasets.
translated by 谷歌翻译
在过去十年中,图形内核引起了很多关注,并在结构化数据上发展成为一种快速发展的学习分支。在过去的20年中,该领域发生的相当大的研究活动导致开发数十个图形内核,每个图形内核都对焦于图形的特定结构性质。图形内核已成功地成功地在广泛的域中,从社交网络到生物信息学。本调查的目标是提供图形内核的文献的统一视图。特别是,我们概述了各种图形内核。此外,我们对公共数据集的几个内核进行了实验评估,并提供了比较研究。最后,我们讨论图形内核的关键应用,并概述了一些仍有待解决的挑战。
translated by 谷歌翻译
本文对过去二十年来对自然语言生成(NLG)的研究提供了全面的审查,特别是与数据到文本生成和文本到文本生成深度学习方法有关,以及NLG的新应用技术。该调查旨在(a)给出关于NLG核心任务的最新综合,以及该领域采用的建筑;(b)详细介绍各种NLG任务和数据集,并提请注意NLG评估中的挑战,专注于不同的评估方法及其关系;(c)强调一些未来的强调和相对近期的研究问题,因为NLG和其他人工智能领域的协同作用而增加,例如计算机视觉,文本和计算创造力。
translated by 谷歌翻译