静息状态脑功能活性对非成像表型的单个主体映射是神经影像学的主要目标。当今应用的绝大多数学习方法都取决于静态表示或短期时间相关性。这与动态性的大脑活动性质不符,并且表现出短期和长期依赖性。此外,在单个任务/数据集上已经开发并验证了新的复杂的深度学习方法。这些模型在研究不同目标的研究中的应用通常需要详尽的超参数搜索,模型工程以及反复试验,以通过更简单的线性模型获得竞争结果。反过来,这限制了他们在快速发展的研究领域中的采用和阻碍公平的基准测试。为此,我们提出了fMRI-S4;一种用于分类表型和精神疾病的多功能深度学习模型,该模型来自静止状态功能磁共振成像扫描时间的时间。 fMRI-S4使用1D卷积和最近引入的状态空间模型S4捕获信号中的短距离和长范围时间依赖性。所提出的体系结构在任务/数据集中具有轻巧,样本效率且健壮。我们在三个多站点RS-FMRI数据集上验证了fMRI-S4诊断重大抑郁症(MDD),自闭症谱系障碍(ASD)和性别分类的任务。我们证明fMRI-S4可以在所有三个任务上均优于现有方法,并且可以作为插件和游戏模型进行培训,而无需针对每种设置进行特殊的超散件调整
translated by 谷歌翻译
近年来,来自神经影像数据的脑疾病的单一受试者预测引起了人们的关注。然而,对于某些异质性疾病,例如严重抑郁症(MDD)和自闭症谱系障碍(ASD),大规模多站点数据集对预测模型的性能仍然很差。我们提出了一个两阶段的框架,以改善静止状态功能磁共振成像(RS-FMRI)的异质精神疾病的诊断。首先,我们建议对健康个体的数据进行自我监督的掩盖预测任务,以利用临床数据集中健康对照与患者之间的差异。接下来,我们在学习的判别性表示方面培训了一个有监督的分类器。为了建模RS-FMRI数据,我们开发Graph-S4;最近提出的状态空间模型S4扩展到图形设置,其中底层图结构未提前知道。我们表明,将框架和Graph-S4结合起来可以显着提高基于神经成像的MDD和ASD的基于神经影像学的单个主题预测模型和三个开源多中心RS-FMRI临床数据集的诊断性能。
translated by 谷歌翻译
准确诊断自闭症谱系障碍(ASD),随后有效康复对该疾病的管理至关重要。人工智能(AI)技术可以帮助医生应用自动诊断和康复程序。 AI技术包括传统机器学习(ML)方法和深度学习(DL)技术。常规ML方法采用各种特征提取和分类技术,但在DL中,特征提取和分类过程是智能的,一体地完成的。诊断ASD的DL方法已经专注于基于神经影像动物的方法。神经成像技术是无侵入性疾病标志物,可能对ASD诊断有用。结构和功能神经影像技术提供了关于大脑的结构(解剖结构和结构连接)和功能(活性和功能连接)的实质性信息。由于大脑的复杂结构和功能,提出了在不利用像DL这样的强大AI技术的情况下使用神经影像数据进行ASD诊断的最佳程序可能是具有挑战性的。本文研究了借助DL网络进行以区分ASD进行的研究。还评估了用于支持ASD患者的康复工具,用于利用DL网络的支持患者。最后,我们将在ASD的自动检测和康复中提出重要挑战,并提出了一些未来的作品。
translated by 谷歌翻译
在神经影像分析中,功能磁共振成像(fMRI)可以很好地评估没有明显结构病变的脑疾病的大脑功能变化。到目前为止,大多数基于研究的FMRI研究将功能连接性作为疾病分类的基本特征。但是,功能连接通常是根据感兴趣的预定义区域的时间序列计算的,并忽略了每个体素中包含的详细信息,这可能会导致诊断模型的性能恶化。另一个方法论上的缺点是训练深模型的样本量有限。在这项研究中,我们提出了Brainformer,这是一种用于单个FMRI体积的脑疾病分类的一般混合变压器架构,以充分利用素食细节,并具有足够的数据尺寸和尺寸。脑形形式是通过对每个体素内的局部提示进行建模的3D卷积,并捕获两个全球注意力障碍的遥远地区之间的全球关系。局部和全局线索通过单流模型在脑形中汇总。为了处理多站点数据,我们提出了一个归一化层,以将数据标准化为相同的分布。最后,利用一种基于梯度的定位图可视化方法来定位可能的疾病相关生物标志物。我们在五个独立获取的数据集上评估了脑形形成器,包括Abide,ADNI,MPILMBB,ADHD-200和ECHO,以及自闭症疾病,阿尔茨海默氏病,抑郁症,注意力缺陷多动障碍和头痛疾病。结果证明了脑形对多种脑疾病的诊断的有效性和普遍性。脑形物可以在临床实践中促进基于神经成像的精确诊断,并激励FMRI分析中的未来研究。代码可在以下网址获得:https://github.com/ziyaozhangforpcl/brainformer。
translated by 谷歌翻译
在这项工作中,我们使用功能磁共振成像(fMRI)专注于具有挑战性的任务,神经疾病分类。在基于人群的疾病分析中,图卷积神经网络(GCN)取得了显着的成功。但是,这些成就与丰富的标记数据密不可分,对虚假信号敏感。为了改善在标签有效的设置下的fMRI表示学习和分类,我们建议在GCN上使用新颖的,理论驱动的自我监督学习(SSL)框架,即在FMRI分析门上用于时间自我监督学习的CCA。具体而言,要求设计合适有效的SSL策略来提取fMRI的形成和鲁棒特征。为此,我们研究了FMRI动态功能连接(FC)的几种新的图表增强策略,用于SSL培训。此外,我们利用规范相关分析(CCA)在不同的时间嵌入中,并呈现理论含义。因此,这产生了一个新颖的两步GCN学习程序,该过程包括在未标记的fMRI人群图上的(i)SSL组成,并且(ii)在小标记的fMRI数据集上进行了微调,以进行分类任务。我们的方法在两个独立的fMRI数据集上进行了测试,这表明自闭症和痴呆症诊断方面表现出色。
translated by 谷歌翻译
大脑区域之间的功能连通性(FC)通常是通过应用于功能磁共振成像(FMRI)数据的统计依赖度量来估计的。所得的功能连接矩阵(FCM)通常用于表示脑图的邻接矩阵。最近,图形神经网络(GNN)已成功应用于FCM,以学习脑图表示。但是,现有GNN方法的一个普遍局限性是,它们要求在模型训练之前知道图形邻接矩阵。因此,隐含地假设数据的基础依赖性结构已知。不幸的是,对于fMRI而言,情况并非如此,因为哪种统计度量的选择最能代表数据的依赖性结构是非平凡的。同样,大多数GNN应用于功能磁共振成像,FC都会随着时间的推移而静态,这与神经科学的证据相反,表明功能性脑网络是随时间变化且动态的。这些复合问题可能会对GNN学习脑图表示的能力产生不利影响。作为解决方案,我们提出了动态大脑图结构学习(DBGSL),这是一种学习fMRI数据最佳时变依赖性结构的监督方法。具体而言,DBGSL通过应用于大脑区域嵌入的时空注意力从fMRI时间表中学习了动态图。然后将所得的图馈送到空间GNN中,以学习分类的图表。大型休息状态以及性别分类任务的fMRI数据集的实验表明,DBGSL可以实现最新的性能。此外,对学习动态图的分析突出了与现有神经科学文献的发现相符的预测相关大脑区域。
translated by 谷歌翻译
理解神经动力学的空间和时间特征之间的相互作用可以有助于我们对人脑中信息处理的理解。图形神经网络(GNN)提供了一种新的可能性,可以解释图形结构化信号,如在复杂的大脑网络中观察到的那些。在我们的研究中,我们比较不同的时空GNN架构,并研究他们复制在功能MRI(FMRI)研究中获得的神经活动分布的能力。我们评估GNN模型在MRI研究中各种场景的性能,并将其与VAR模型进行比较,目前主要用于定向功能连接分析。我们表明,即使当可用数据稀缺时,基于基于解剖学基板的局部功能相互作用,基于GNN的方法也能够鲁棒地规模到大型网络研究。通过包括作为信息衬底的解剖连接以进行信息传播,这种GNN还提供了关于指向连接性分析的多模阶视角,提供了研究脑网络中的时空动态的新颖可能性。
translated by 谷歌翻译
研究了自闭症数据集,以确定自闭症和健康组之间的差异。为此,分析了这两组的静止状态功能磁共振成像(RS-FMRI)数据,并创建了大脑区域之间的连接网络。开发了几个分类框架,以区分组之间的连接模式。比较了统计推断和精度的最佳模型,并分析了精度和模型解释性之间的权衡。最后,据报道,分类精度措施证明了我们框架的性能。我们的最佳模型可以以71%的精度将自闭症和健康的患者分类为多站点I数据。
translated by 谷歌翻译
序列建模的一个中心目标是设计一个单个原则模型,该模型可以解决各种方式和任务,尤其是在远程依赖方面的序列数据。尽管包括RNN,CNN和Transformers在内的传统模型具有用于捕获长期依赖性的专业变体,但它们仍然很难扩展到长时间的10000美元或更多步骤。通过模拟基本状态空间模型(SSM)\(x'(t)= ax(t)= ax(t) + bu(t),y(t)= cx(t) + du(t) + du(t)\ ), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically.但是,该方法具有过度的计算和内存需求,使其无法作为一般序列建模解决方案。我们根据SSM的新参数化提出了结构化状态空间序列模型(S4),并表明它可以比以前的方法更有效地计算出其理论强度。我们的技术涉及对\(a \)进行低级校正的调节,从而使其对角度稳定,并将SSM降低到库奇内核的精心研究的计算中。 S4在各种既定的基准测试范围内取得了强劲的经验结果,包括(i)在顺序CIFAR-10上的91 \%精度,没有数据增强或辅助损失,与较大的2-D Resnet相当,(ii)实质上关闭。在图像和语言建模任务上与变形金刚的差距,同时在远程竞技场基准的每个任务上执行每一代$ 60 \ times $ $(iii)sota,包括求解所有先前工作的挑战性path-x任务,而所有先前工作的长度为16K,同时与所有竞争对手一样高效。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
有效地对远程依赖性建模是序列建模的重要目标。最近,使用结构化状态空间序列(S4)层的模型在许多远程任务上实现了最先进的性能。 S4层将线性状态空间模型(SSM)与深度学习技术结合在一起,并利用HIPPO框架进行在线功能近似以实现高性能。但是,该框架导致了架构约束和计算困难,使S4方法变得复杂,可以理解和实施。我们重新审视这样的想法,即遵循河马框架对于高性能是必要的。具体而言,我们替换了许多独立的单输入单输出(SISO)SSM的库S4层与一个多输入的多输出(MIMO)SSM一起使用,并具有降低的潜在尺寸。 MIMO系统的缩小潜在维度允许使用有效的并行扫描,从而简化了将S5层应用于序列到序列转换所需的计算。此外,我们将S5 SSM的状态矩阵初始化,其近似与S4 SSMS使用的河马级矩阵近似,并表明这是MIMO设置的有效初始化。 S5与S4在远程任务上的表现相匹配,包括在远程竞技场基准的套件中平均达到82.46%,而S4的80.48%和最佳的变压器变体的61.41%。
translated by 谷歌翻译
深度学习模型已使高维功能MRI(fMRI)数据的分析能够跃升。然而,许多以前的方法对各种时间尺度的上下文表示次优敏感。在这里,我们提出了螺栓,这是一种血氧级依赖性变压器模型,用于分析多变量fMRI时间序列。螺栓利用了一系列具有新型融合窗户注意机制的变压器编码器。编码是在时间序列中在时间重叠的窗口上执行的,以捕获本地表示。为了暂时地集成信息,在每个窗口中的基本令牌和来自附近窗口的边缘令牌之间计算交叉窗口的注意力。要逐渐从本地表示,窗口重叠的程度以及边缘令牌的数量在整个级联反应中逐渐增加。最后,采用了一种新颖的跨窗口正则化来使整个时间序列之间的高级分类特征对齐。大规模公共数据集的全面实验证明了螺栓与最先进方法的出色性能。此外,解释性分析以确定具有里程碑意义的时间点和区域,这些时间点和区域最大程度地促进模型的决策证实了文献中突出的神经科学发现。
translated by 谷歌翻译
功能磁共振成像(fMRI)的功能连通性网络(FCN)数据越来越多地用于诊断脑疾病。然而,最新的研究用来使用单个脑部分析地图集以一定的空间尺度构建FCN,该空间尺度很大程度上忽略了层次范围内不同空间尺度的功能相互作用。在这项研究中,我们提出了一个新型框架,以对脑部疾病诊断进行多尺度FCN分析。我们首先使用一组定义明确的多尺地图像来计算多尺度FCN。然后,我们利用多尺度地图集中各个区域之间具有生物学意义的大脑分层关系,以跨多个空间尺度进行淋巴结池,即“ Atlas指导的池”。因此,我们提出了一个基于多尺度的层次图形卷积网络(MAHGCN),该网络(MAHGCN)建立在图形卷积和ATLAS引导的池上,以全面地从多尺度FCN中详细提取诊断信息。关于1792名受试者的神经影像数据的实验证明了我们提出的方法在诊断阿尔茨海默氏病(AD),AD的前驱阶段(即轻度认知障碍[MCI])以及自闭症谱系障碍(ASD),,AD的前瞻性阶段(即,轻度认知障碍[MCI]),,精度分别为88.9%,78.6%和72.7%。所有结果都显示出我们提出的方法比其他竞争方法具有显着优势。这项研究不仅证明了使用深度学习增强的静止状态fMRI诊断的可行性,而且还强调,值得探索多尺度脑层次结构中的功能相互作用,并将其整合到深度学习网络体系结构中,以更好地理解有关的神经病理学。脑疾病。
translated by 谷歌翻译
大脑网络将大脑区域之间的复杂连接性描述为图形结构,这为研究脑连接素提供了强大的手段。近年来,图形神经网络已成为使用结构化数据的普遍学习范式。但是,由于数据获取的成本相对较高,大多数大脑网络数据集的样本量受到限制,这阻碍了足够的培训中的深度学习模型。受元学习的启发,该论文以有限的培训示例快速学习新概念,研究了在跨数据库中分析脑连接组的数据有效培训策略。具体而言,我们建议在大型样本大小的数据集上进行元训练模型,并将知识转移到小数据集中。此外,我们还探索了两种面向脑网络的设计,包括Atlas转换和自适应任务重新启动。与其他训练前策略相比,我们的基于元学习的方法实现了更高和稳定的性能,这证明了我们提出的解决方案的有效性。该框架还能够以数据驱动的方式获得有关数据集和疾病之间相似之处的新见解。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
由于运输网络中复杂的时空依赖性,准确的交通预测是智能运输系统中一项艰巨的任务。许多现有的作品利用复杂的时间建模方法与图形卷积网络(GCN)合并,以捕获短期和长期时空依赖性。但是,这些具有复杂设计的分离模块可以限制时空表示学习的有效性和效率。此外,大多数以前的作品都采用固定的图形构造方法来表征全局时空关系,这限制了模型在不同时间段甚至不同的数据方案中的学习能力。为了克服这些局限性,我们提出了一个自动扩张的时空同步图网络,称为Auto-DSTSGN用于流量预测。具体而言,我们设计了自动扩张的时空同步图(自动-DSTSG)模块,以捕获短期和长期时空相关性,通过在增加顺序的扩张因子中堆叠更深的层。此外,我们提出了一种图形结构搜索方法,以自动构建可以适应不同数据方案的时空同步图。在四个现实世界数据集上进行的广泛实验表明,与最先进的方法相比,我们的模型可以取得约10%的改善。源代码可在https://github.com/jinguangyin/auto-dstsgn上找到。
translated by 谷歌翻译
State space models (SSMs) have demonstrated state-of-the-art sequence modeling performance in some modalities, but underperform attention in language modeling. Moreover, despite scaling nearly linearly in sequence length instead of quadratically, SSMs are still slower than Transformers due to poor hardware utilization. In this paper, we make progress on understanding the expressivity gap between SSMs and attention in language modeling, and on reducing the hardware barrier between SSMs and attention. First, we use synthetic language modeling tasks to understand the gap between SSMs and attention. We find that existing SSMs struggle with two capabilities: recalling earlier tokens in the sequence and comparing tokens across the sequence. To understand the impact on language modeling, we propose a new SSM layer, H3, that is explicitly designed for these abilities. H3 matches attention on the synthetic languages and comes within 0.4 PPL of Transformers on OpenWebText. Furthermore, a hybrid 125M-parameter H3-attention model that retains two attention layers surprisingly outperforms Transformers on OpenWebText by 1.0 PPL. Next, to improve the efficiency of training SSMs on modern hardware, we propose FlashConv. FlashConv uses a fused block FFT algorithm to improve efficiency on sequences up to 8K, and introduces a novel state passing algorithm that exploits the recurrent properties of SSMs to scale to longer sequences. FlashConv yields 2$\times$ speedup on the long-range arena benchmark and allows hybrid language models to generate text 1.6$\times$ faster than Transformers. Using FlashConv, we scale hybrid H3-attention language models up to 1.3B parameters on the Pile and find promising initial results, achieving lower perplexity than Transformers and outperforming Transformers in zero- and few-shot learning on a majority of tasks in the SuperGLUE benchmark.
translated by 谷歌翻译
在大脑中找到适当的动态活动的适当表示对于许多下游应用至关重要。由于其高度动态的性质,暂时平均fMRI(功能磁共振成像)只能提供狭窄的脑活动视图。以前的作品缺乏学习和解释大脑体系结构中潜在动态的能力。本文构建了一个有效的图形神经网络模型,该模型均包含了从DWI(扩散加权成像)获得的区域映射的fMRI序列和结构连接性作为输入。我们通过学习样品水平的自适应邻接矩阵并进行新型多分辨率内群平滑来发现潜在大脑动力学的良好表示。我们还将输入归因于具有集成梯度的输入,这使我们能够针对每个任务推断(1)高度涉及的大脑连接和子网络,(2)成像序列的时间键帧,这些成像序列表征了任务,以及(3)歧视单个主体的子网络。这种识别特征在异质任务和个人中表征信号状态的关键子网的能力对神经科学和其他科学领域至关重要。广泛的实验和消融研究表明,我们提出的方法在空间 - 周期性图信号建模中的优越性和效率,具有对脑动力学的深刻解释。
translated by 谷歌翻译
精神分裂症是一种慢性神经精神疾病,会引起大脑内部的不同结构改变。我们假设将深度学习应用于结构性神经影像学数据集可以检测到与疾病相关的改变,并提高分类和诊断准确性。我们使用单一可用的,常规的T1加权MRI扫描测试了这一假设,我们使用标准后处理方法从中提取了3D全脑结构。然后在三个开放数据集上开发,优化和评估了一个深度学习模型,并对精神分裂症患者进行T1加权MRI扫描。我们提出的模型优于基准模型,该模型还使用3D CNN体系结构对结构MR图像进行了训练。我们的模型几乎能够完美地(ROC曲线下的区域= 0.987),将精神分裂症患者与看不见的结构MRI扫描中的健康对照区分开。区域分析将皮质下区域和心室局部作为最预测的大脑区域。皮层结构在人类的认知,情感和社会功能中起关键作用,这些区域的结构异常与精神分裂症有关。我们的发现证实了精神分裂症与皮质下大脑结构的广泛改变有关,皮层结构信息在诊断分类中提供了突出的特征。总之,这些结果进一步证明了深度学习的潜力,以改善精神分裂症的诊断,并从单个标准的T1加权脑MRI中确定其结构性神经影像学特征。
translated by 谷歌翻译