随着深度神经网络(DNN)的出现,成为许多计算机视觉任务中的骨干,它们在现实世界中的消费应用程序中的采用不断扩大。鉴于智能设备的丰富性和无所不能,正在形成“智能生态系统”,同时进行感应而不是独立。这将处式推理范式转移到在边缘部署集中式神经加工单元(NPU),其中多个设备(例如,在智能家居或自动驾驶汽车中)可以通过动态速率流式传输数据以进行处理。尽管这为输入批处理提供了增强的潜力,但幼稚的解决方案可以导致表现不佳的性能和经验质量,尤其是在尖峰负载下。同时,动态DNN的部署,包括随机计算图(例如早期 - 外观(EE)模型),引入了此类系统中动态行为的新维度。在这项工作中,我们提出了一种新颖的早期感知的调度算法,该算法允许在运行时进行样本抢占,以说明到达和早期外来过程引入的动态性。同时,我们向NPU硬件体系结构的设计空间介绍了两个新颖的维度,即流体批处理和可堆叠的处理元素,这些元素可以使运行时适应性适应不同的批次尺寸,并显着改善了NPU利用率,即使在小批次尺寸下也是如此。我们的评估表明,我们的系统分别在平均延迟和尾部潜伏期SLO满意度方面,平均达到1.97倍和6.7倍的改善。
translated by 谷歌翻译
最近,使用卷积神经网络(CNNS)存在移动和嵌入式应用的爆炸性增长。为了减轻其过度的计算需求,开发人员传统上揭示了云卸载,突出了高基础设施成本以及对网络条件的强烈依赖。另一方面,强大的SOC的出现逐渐启用设备执行。尽管如此,低端和中层平台仍然努力充分运行最先进的CNN。在本文中,我们展示了Dyno,一种分布式推断框架,将两全其人的最佳框架结合起来解决了几个挑战,例如设备异质性,不同的带宽和多目标要求。启用这是其新的CNN特定数据包装方法,其在onloading计算时利用CNN的不同部分的精度需求的可变性以及其新颖的调度器,该调度器共同调谐分区点并在运行时传输数据精度适应其执行环境的推理。定量评估表明,Dyno优于当前最先进的,通过竞争对手的CNN卸载系统,在竞争对手的CNN卸载系统上提高吞吐量超过一个数量级,最高可达60倍的数据。
translated by 谷歌翻译
In recent years, image and video delivery systems have begun integrating deep learning super-resolution (SR) approaches, leveraging their unprecedented visual enhancement capabilities while reducing reliance on networking conditions. Nevertheless, deploying these solutions on mobile devices still remains an active challenge as SR models are excessively demanding with respect to workload and memory footprint. Despite recent progress on on-device SR frameworks, existing systems either penalize visual quality, lead to excessive energy consumption or make inefficient use of the available resources. This work presents NAWQ-SR, a novel framework for the efficient on-device execution of SR models. Through a novel hybrid-precision quantization technique and a runtime neural image codec, NAWQ-SR exploits the multi-precision capabilities of modern mobile NPUs in order to minimize latency, while meeting user-specified quality constraints. Moreover, NAWQ-SR selectively adapts the arithmetic precision at run time to equip the SR DNN's layers with wider representational power, improving visual quality beyond what was previously possible on NPUs. Altogether, NAWQ-SR achieves an average speedup of 7.9x, 3x and 1.91x over the state-of-the-art on-device SR systems that use heterogeneous processors (MobiSR), CPU (SplitSR) and NPU (XLSR), respectively. Furthermore, NAWQ-SR delivers an average of 3.2x speedup and 0.39 dB higher PSNR over status-quo INT8 NPU designs, but most importantly mitigates the negative effects of quantization on visual quality, setting a new state-of-the-art in the attainable quality of NPU-based SR.
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
语义细分是许多视觉系统的骨干,从自动驾驶汽车和机器人导航到增强现实和电信。在有限的资源信封内经常在严格的延迟约束下运行,对有效执行的优化变得很重要。同时,目标平台的异质功能以及不同应用程序的不同限制需要设计和培训多个针对特定目标的细分模型,从而导致过度维护成本。为此,我们提出了一个框架,用于将最新的分割CNN转换为多EXIT语义细分(MESS)网络:经过特殊训练的模型,这些模型沿其深度沿其深度进行参数化的早期出口到i)在推断过程中动态保存计算更容易的样本和ii)通过提供可定制的速度准确性权衡来节省培训和维护成本。设计和培训此类网络天真地损害了性能。因此,我们为多EXIT网络提出了新颖的两期培训方案。此外,Mess的参数化可以使附件分割头的数字,位置和体系结构以及退出策略通过详尽的搜索在<1GPUH中进行部署。这使得混乱能够快速适应每个目标用例的设备功能和应用要求,并提供火车一路上的部署解决方案。与原始的骨干网络相比,Mess变体具有相同精度的潜伏期增长率高达2.83倍,而相同的计算预算的潜伏期提高到同一计算预算的准确性高5.33 pp。最后,与最先进的技术相比,MESS提供了更快的架构选择订单。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
Emerging real-time multi-model ML (RTMM) workloads such as AR/VR and drone control often involve dynamic behaviors in various levels; task, model, and layers (or, ML operators) within a model. Such dynamic behaviors are new challenges to the system software in an ML system because the overall system load is unpredictable unlike traditional ML workloads. Also, the real-time processing requires to meet deadlines, and multi-model workloads involve highly heterogeneous models. As RTMM workloads often run on resource-constrained devices (e.g., VR headset), developing an effective scheduler is an important research problem. Therefore, we propose a new scheduler, SDRM3, that effectively handles various dynamicity in RTMM style workloads targeting multi-accelerator systems. To make scheduling decisions, SDRM3 quantifies the unique requirements for RTMM workloads and utilizes the quantified scores to drive scheduling decisions, considering the current system load and other inference jobs on different models and input frames. SDRM3 has tunable parameters that provide fast adaptivity to dynamic workload changes based on a gradient descent-like online optimization, which typically converges within five steps for new workloads. In addition, we also propose a method to exploit model level dynamicity based on Supernet for exploiting the trade-off between the scheduling effectiveness and model performance (e.g., accuracy), which dynamically selects a proper sub-network in a Supernet based on the system loads. In our evaluation on five realistic RTMM workload scenarios, SDRM3 reduces the overall UXCost, which is a energy-delay-product (EDP)-equivalent metric for real-time applications defined in the paper, by 37.7% and 53.2% on geometric mean (up to 97.6% and 97.1%) compared to state-of-the-art baselines, which shows the efficacy of our scheduling methodology.
translated by 谷歌翻译
基于von-neumann架构的传统计算系统,数据密集型工作负载和应用程序(如机器学习)和应用程序都是基本上限制的。随着数据移动操作和能量消耗成为计算系统设计中的关键瓶颈,对近数据处理(NDP),机器学习和特别是神经网络(NN)的加速器等非传统方法的兴趣显着增加。诸如Reram和3D堆叠的新兴内存技术,这是有效地架构基于NN的基于NN的加速器,因为它们的工作能力是:高密度/低能量存储和近记忆计算/搜索引擎。在本文中,我们提出了一种为NN设计NDP架构的技术调查。通过基于所采用的内存技术对技术进行分类,我们强调了它们的相似之处和差异。最后,我们讨论了需要探索的开放挑战和未来的观点,以便改进和扩展未来计算平台的NDP架构。本文对计算机学习领域的计算机架构师,芯片设计师和研究人员来说是有价值的。
translated by 谷歌翻译
当今的大多数计算机视觉管道都是围绕深神经网络构建的,卷积操作需要大部分一般的计算工作。与标准算法相比,Winograd卷积算法以更少的MAC计算卷积,当使用具有2x2尺寸瓷砖$ F_2 $的版本时,3x3卷积的操作计数为2.25倍。即使收益很大,Winograd算法具有较大的瓷砖尺寸,即$ f_4 $,在提高吞吐量和能源效率方面具有更大的潜力,因为它将所需的MAC降低了4倍。不幸的是,具有较大瓷砖尺寸的Winograd算法引入了数值问题,这些问题阻止了其在整数域特异性加速器上的使用和更高的计算开销,以在空间和Winograd域之间转换输入和输出数据。为了解锁Winograd $ F_4 $的全部潜力,我们提出了一种新颖的Tap-Wise量化方法,该方法克服了使用较大瓷砖的数值问题,从而实现了仅整数的推断。此外,我们介绍了以功率和区域效率的方式处理Winograd转换的自定义硬件单元,并展示了如何将此类自定义模块集成到工业级,可编程的DSA中。对大量最先进的计算机视觉基准进行了广泛的实验评估表明,Tap-Wise量化算法使量化的Winograd $ F_4 $网络几乎与FP32基线一样准确。 Winograd增强的DSA可实现高达1.85倍的能源效率,最高可用于最先进的细分和检测网络的端到端速度高达1.83倍。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
原则上,稀疏的神经网络应该比传统的密集网络更有效。大脑中的神经元表现出两种类型的稀疏性;它们稀疏地相互连接和稀疏活跃。当组合时,这两种类型的稀疏性,称为重量稀疏性和激活稀疏性,提出了通过两个数量级来降低神经网络的计算成本。尽管存在这种潜力,但今天的神经网络只使用重量稀疏提供适度的性能益处,因为传统的计算硬件无法有效地处理稀疏网络。在本文中,我们引入了互补稀疏性,这是一种显着提高现有硬件对双稀疏网络性能的新技术。我们证明我们可以实现高性能运行的重量稀疏网络,我们可以通过结合激活稀疏性来乘以这些加速。采用互补稀疏性,我们显示出对FPGA的推断的吞吐量和能效提高了100倍。我们分析了典型的商业卷积网络等各种内核的可扩展性和资源权衡,例如Resnet-50和MobileNetv2。我们的互补稀疏性的结果表明,重量加激活稀疏性可以是有效的缩放未来AI模型的有效组合。
translated by 谷歌翻译
深度神经网络(DNN)的记录断裂性能具有沉重的参数化,导致外部动态随机存取存储器(DRAM)进行存储。 DRAM访问的禁用能量使得在资源受限的设备上部署DNN是不普遍的,呼叫最小化重量和数据移动以提高能量效率。我们呈现SmartDeal(SD),算法框架,以进行更高成本的存储器存储/访问的较低成本计算,以便在推理和培训中积极提高存储和能量效率。 SD的核心是一种具有结构约束的新型重量分解,精心制作以释放硬件效率潜力。具体地,我们将每个重量张量分解为小基矩阵的乘积以及大的结构稀疏系数矩阵,其非零被量化为-2的功率。由此产生的稀疏和量化的DNN致力于为数据移动和重量存储而大大降低的能量,因为由于稀疏的比特 - 操作和成本良好的计算,恢复原始权重的最小开销。除了推理之外,我们采取了另一次飞跃来拥抱节能培训,引入创新技术,以解决培训时出现的独特障碍,同时保留SD结构。我们还设计专用硬件加速器,充分利用SD结构来提高实际能源效率和延迟。我们在不同的设置中对多个任务,模型和数据集进行实验。结果表明:1)应用于推理,SD可实现高达2.44倍的能效,通过实际硬件实现评估; 2)应用于培训,储存能量降低10.56倍,减少了10.56倍和4.48倍,与最先进的训练基线相比,可忽略的准确性损失。我们的源代码在线提供。
translated by 谷歌翻译
深度神经网络(DNN)已成为移动和嵌入式系统中的普遍存在的技术,用于图像/对象识别和分类。执行多个DNN的趋势同时加剧了资源受限移动设备上满足严格延迟/准确性要求的现有限制。现有技术通过根据资源动态缩放模型大小来探索精度资源权衡的光。然而,这种模型缩放方法接近迫在眉睫的挑战:(i)模型尺寸的大空间探索,(ii)对不同模型组合的培训时间非常长。在本文中,我们介绍了Legodnn,一种用于在移动视觉系统中运行多DNN工作负载的轻质块粒度缩放解决方案。 Legodnn仅通过在DNN中提取和培训少数常见块(例如,在VGG和RENET中的VGG和8中的8中)来保证短模型培训时间。在运行时,Legodnn最佳地结合了这些块的后代模型,以最大限度地在特定资源和延迟约束下最大限度地提高精度,同时通过DNN的智能块级缩放来降低切换开销。我们在Tensorflow Lite中实现Legodnn,并通过一组普遍的DNN模型,广泛地评估了最先进的技术(浮标缩放,知识蒸馏和模型压缩)。评估结果表明,乐高达在模型尺寸下提供了1,296倍至279,936倍,而在不增加训练时间的情况下,推断准确性的提高高达31.74%,降低缩放能耗减少了71.07%。
translated by 谷歌翻译
深度学习模型推断是许多企业和科学发现过程中的关键服务。本文介绍了Ribbon,这是一种新颖的深度学习推理服务系统,符合两个相互竞争的目标:服务质量(QoS)目标和成本效益。功能区背后的关键思想是智能采用各种云计算实例(异质实例)来满足QoS目标并最大程度地节省成本。功能区设计了一种贝叶斯优化驱动的策略,该策略可帮助用户在云计算平台上为其模型推理服务需求构建最佳的异质实例集 - 并且,功能区展示了其优于使用均匀实例池的推理服务系统的优越性。功能区可为不同的学习模型节省多达16%的推理服务成本,包括新兴的深度学习建议系统模型和药物发现的启用模型。
translated by 谷歌翻译
就起搏器提供的信号(即,神心电图电测(EGM))和信号医生使用(即12-铅心电图(ECG))而言,存在差距以诊断出异常节律。因此,前者,即使远程传输,医生也不足以提供精确的诊断,更不用说更及时干预。为了缩短这种差距,并对即时响应不规则和不频繁的心室节律的即时反应进行启发式步骤,我们提出了一个新的框架被称为RT-RCG,以自动搜索(1)高效的深神经网络(DNN)结构和然后(2)相应的加速器,能够实现来自EGM信号的ECG信号的实时和高质量的重建。具体地,RT-RCG提出了一种针对EGM信号的ECG重建量身定制的新的DNN搜索空间,并结合了可分辨率的加速搜索(DAS)发动机,以有效地导航大而离散的加速器设计空间以产生优化的加速器。各种环境下的广泛实验和消融研究一致地验证了RT-RCG的有效性。据我们所知,RT-RCG是第一个利用神经结构搜索(NAS)来同时解决重建效能和效率的效率。
translated by 谷歌翻译
通过FPGA加速神经网络推断作为一种流行的选择,因为FPGA的重新配置性和高性能计算能力本质上满足了快速发展神经算法的计算需求。然而,FPGA(例如,Xilinx DPU)上的受欢迎的神经加速器主要利用DSP资源来构建其处理单元,而丰富的LUT资源没有充分利用。通过软件 - 硬件共同设计方法,在这项工作中,我们开发了一种基于FPGA的异构计算系统,用于神经网络加速度。从硬件角度来看,所提出的加速器由基于DSP和LUT的一般矩阵乘法(GEMM)计算核心组成,其以异质方式形成整个计算系统。基于DSP和LUT的GEMM核心计算为W.R.T统一指令集架构(ISA)和Unified Buffers。沿着神经网络推理路径的数据流,卷积/完全连接层的计算分为两部分,由基于DSP和LUT的GEMM核心异步处理。从软件的角度来看,我们在数学上和系统地模拟所提出的异构加速器的延迟和资源利用,关于不同的系统设计配置。通过利用加强学习技术,我们构建一个框架,实现目标异构加速器的设计规范的端到端选择和优化,包括工作量分裂策略,混合精度量化方案和DSP和LUT的资源分配 - 核。凭借提出的设计框架和异构计算系统,我们的设计优于最先进的混合和匹配设计,延迟减少了1.12-1.32倍,推理准确性更高。 N3H核心是开放的:https://github.com/elliothe/n3h_core。
translated by 谷歌翻译
重量修剪是一种有效的模型压缩技术,可以解决在移动设备上实现实时深神经网络(DNN)推断的挑战。然而,由于精度劣化,难以利用硬件加速度,以及某些类型的DNN层的限制,难以降低的应用方案具有有限的应用方案。在本文中,我们提出了一般的细粒度的结构化修剪方案和相应的编译器优化,适用于任何类型的DNN层,同时实现高精度和硬件推理性能。随着使用我们的编译器优化所支持的不同层的灵活性,我们进一步探讨了确定最佳修剪方案的新问题,了解各种修剪方案的不同加速度和精度性能。两个修剪方案映射方法,一个是基于搜索,另一个是基于规则的,建议自动推导出任何给定DNN的每层的最佳修剪规则和块大小。实验结果表明,我们的修剪方案映射方法,以及一般细粒化结构修剪方案,优于最先进的DNN优化框架,最高可达2.48 $ \ times $和1.73 $ \ times $ DNN推理加速在CiFar-10和Imagenet DataSet上没有准确性损失。
translated by 谷歌翻译
注意机制为各种任务形成最先进的机器学习模型的骨干。然而,在深神经网络(DNN)加速器上部署它们,特别是在长序列下挑战,因为这项工作识别。这是由于展示层数的运营商,在记忆占地面积中表现出有限的再利用机会和二次生长,导致严重的记忆界限。为了解决这个问题,我们介绍了一个新的注意力定制数据流,被称为扁平,它识别注意层内的融合机会,并实现片上内存感知交错执行和平铺机制。通过有效利用高带宽,低容量的片上缓冲器,平坦增加了有效的内存带宽,从而实现了更好的运行时间和计算资源利用率。在我们的评估中,扁平达到1.94倍和1.76倍的加速度和49%和42%的能量减少与最先进的边缘和云加速器的基线执行相比。
translated by 谷歌翻译
自然语言处理(NLP)推论正在看到移动应用程序的采用量增加,在此,对于至关重要的保留用户数据隐私和避免网络往返的推论是必需的。然而,NLP模型的前所未有的大小强调了延迟和内存,这是移动设备的两个关键资源。为了满足目标延迟,将整个模型保存在内存中会尽快启动执行,但将一个应用程序的内存足迹增加了几次,将其收益限制为仅在被移动内存管理回收之前的一些推论。另一方面,从存储按需加载模型会导致几秒钟的io长,远远超过了用户满足的延迟范围;由于IO和计算延迟之间的偏斜度很大,因此管道层的模型加载和执行也不会隐藏IO。为此,我们提出了Speedy Transformer推断(STI)。 STI建立在模型最重要的部分上最大化IO/计算资源利用率的关键思想,通过两种新颖的技术来调和延迟/记忆张力。首先,模型碎片。 STI将模型参数视为独立可调的碎片,并介绍了其对准确性的重要性。其次,带有预紧缓冲液的弹性管道计划。 STI实例化IO/计算管道,并使用一个小的缓冲区进行预加载碎片来进行引导执行,而不会在早期阶段停滞不前;它根据资源弹性执行的重要性明智地选择,调音和汇编碎片,从而最大程度地提高推理精度。在两个商品SoC上,我们在实用的目标潜伏期以及CPU和GPU上建立了STI并根据广泛的NLP任务进行评估。我们证明,STI提供高精度的高度较低的记忆级,表现优于竞争基准。
translated by 谷歌翻译
稀疏卷积神经网络(CNNS)在过去几年中获得了显着的牵引力,因为与其致密的对应物相比,稀疏的CNNS可以大大降低模型尺寸和计算。稀疏的CNN经常引入层形状和尺寸的变化,这可以防止密集的加速器在稀疏的CNN模型上执行良好。最近提出的稀疏加速器,如SCNN,Eyeriss V2和Sparten,积极利用双面或全稀稀物质,即重量和激活的稀疏性,用于性能收益。然而,这些加速器具有低效的微架构,其限制了它们的性能,而不对非单位步幅卷积和完全连接(Fc)层的支持,或者遭受系统负荷不平衡的大规模遭受。为了规避这些问题并支持稀疏和密集的模型,我们提出了幻影,多线程,动态和灵活的神经计算核心。 Phantom使用稀疏二进制掩码表示,以主动寻求稀疏计算,并动态调度其计算线程以最大化线程利用率和吞吐量。我们还生成了幻象神经计算核心的二维(2D)网格体系结构,我们将其称为Phantom-2D加速器,并提出了一种支持CNN的所有层的新型数据流,包括单位和非单位步幅卷积,和fc层。此外,Phantom-2D使用双级负载平衡策略来最小化计算空闲,从而进一步提高硬件利用率。为了向不同类型的图层显示支持,我们评估VGG16和MobileNet上的幻影架构的性能。我们的模拟表明,Phantom-2D加速器分别达到了12倍,4.1 X,1.98x和2.36倍,超密架构,SCNN,Sparten和Eyeriss V2的性能增益。
translated by 谷歌翻译