可靠的皮肤癌诊断模型在早期筛查和医疗干预中起着至关重要的作用。流行的计算机辅助皮肤癌分类系统采用深度学习方法。然而,最近的研究揭示了它们对对抗攻击的极端脆弱性 - 通常无法察觉地扰动,可显着降低皮肤癌诊断模型的性能。为了减轻这些威胁,这项工作通过在皮肤癌图像中进行反向对抗性扰动提出了一个简单,有效和资源有效的防御框架。具体而言,首先建立了多尺度图像金字塔,以更好地保留医学成像域中的判别结构。为了中和对抗性效应,通过注射各向同性高斯噪声将不同尺度的皮肤图像逐渐扩散,以将对抗性示例移至干净的图像歧管。至关重要的是,为了进一步逆转对抗性的噪音并抑制了冗余的注射噪声,精心设计了一种新型的多尺度降级机制,可以从相邻尺度汇总图像信息。我们评估了方法对ISIC 2019的防御效果,这是最大的皮肤癌多类分类数据集。实验结果表明,所提出的方法可以成功地逆转不同攻击的对抗扰动,并且在捍卫皮肤癌诊断模型中的某些最新方法明显优于某些最先进的方法。
translated by 谷歌翻译
在难以察觉的对抗性示例攻击时被发现深度神经网络是不稳定的,这对于它施加到需要高可靠性的医学诊断系统是危险的。然而,在自然图像中具有良好效果的防御方法可能不适合医疗诊断任务。预处理方法(例如,随机调整大小,压缩)可能导致医学图像中的小病变特征的损失。在增强的数据集中培训网络对已经在线部署的医疗模型也不实用。因此,有必要为医疗诊断任务设计易于部署和有效的防御框架。在本文中,我们为反对对抗性攻击(即Medrdf)的医疗净化模型提出了较强和初稿的初步诊断框架。它采用了Pertined Medical模型的推理时间。具体地,对于每个测试图像,MEDRDF首先创建它的大量噪声副本,并从预训经医学诊断模型获得这些副本的输出标签。然后,基于这些副本的标签,MEDRDF通过多数投票输出最终的稳健诊断结果。除了诊断结果之外,MedRDF还产生强大的公制(RM)作为结果的置信度。因此,利用MEDRDF将预先训练的非强大诊断模型转换为强大的,是方便且可靠的。 Covid-19和Dermamnist数据集的实验结果验证了MEDRDF在提高医疗模型的稳健性方面的有效性。
translated by 谷歌翻译
通过对数据集的样本应用小而有意的最差情况扰动可以产生对抗性输入,这导致甚至最先进的深神经网络,以高信任输出不正确的答案。因此,开发了一些对抗防御技术来提高模型的安全性和稳健性,并避免它们被攻击。逐渐,攻击者和捍卫者之间的游戏类似的竞争,其中两个玩家都会试图在最大化自己的收益的同时互相反对发挥最佳策略。为了解决游戏,每个玩家都基于对对手的战略选择的预测来选择反对对手的最佳策略。在这项工作中,我们正处于防守方面,以申请防止攻击的游戏理论方法。我们使用两个随机化方法,随机初始化和随机激活修剪,以创造网络的多样性。此外,我们使用一种去噪技术,超级分辨率,通过在攻击前预处理图像来改善模型的鲁棒性。我们的实验结果表明,这三种方法可以有效提高深度学习神经网络的鲁棒性。
translated by 谷歌翻译
深神经网络(DNN)对不可感知的恶意扰动高度敏感,称为对抗性攻击。在实际成像和视觉应用中发现了这种脆弱性之后,相关的安全问题引起了广泛的研究关注,并且已经开发出许多防御技术。这些防御方法中的大多数都依赖于对抗性训练(AT) - 根据特定威胁模型对图像的分类网络进行训练,该模型定义了允许修改的幅度。尽管在带来有希望的结果的情况下,对特定威胁模型的培训未能推广到其他类型的扰动。一种不同的方法利用预处理步骤从受攻击的图像中删除对抗性扰动。在这项工作中,我们遵循后一条路径,并旨在开发一种技术,从而导致在威胁模型各种实现中的强大分类器。为此,我们利用了随机生成建模的最新进展,并将其利用它们用于从条件分布中进行采样。我们的辩护依赖于在受攻击的图像中添加高斯i.i.d噪声,然后进行了预验证的扩散过程 - 一种在脱氧网络上执行随机迭代过程的体系结构,从而产生了高感知质量质量的结果。通过在CIFAR-10数据集上进行的广泛实验,通过此随机预处理步骤获得的鲁棒性得到了验证,这表明我们的方法在各种威胁模型下都优于领先的防御方法。
translated by 谷歌翻译
我们提出了一种新颖且有效的纯化基于纯化的普通防御方法,用于预处理盲目的白色和黑匣子攻击。我们的方法仅在一般图像上进行了自我监督学习,在计算上效率和培训,而不需要对分类模型的任何对抗训练或再培训。我们首先显示对原始图像与其对抗示例之间的残余的对抗噪声的实证分析,几乎均为对称分布。基于该观察,我们提出了一种非常简单的迭代高斯平滑(GS),其可以有效地平滑对抗性噪声并实现大大高的鲁棒精度。为了进一步改进它,我们提出了神经上下文迭代平滑(NCIS),其以自我监督的方式列举盲点网络(BSN)以重建GS也平滑的原始图像的辨别特征。从我们使用四种分类模型对大型想象成的广泛实验,我们表明我们的方法既竞争竞争标准精度和最先进的强大精度,则针对最强大的净化器 - 盲目的白色和黑匣子攻击。此外,我们提出了一种用于评估基于商业图像分类API的纯化方法的新基准,例如AWS,Azure,Clarifai和Google。我们通过基于集合转移的黑匣子攻击产生对抗性实例,这可以促进API的完全错误分类,并证明我们的方法可用于增加API的抗逆性鲁棒性。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
There has been a concurrent significant improvement in the medical images used to facilitate diagnosis and the performance of machine learning techniques to perform tasks such as classification, detection, and segmentation in recent years. As a result, a rapid increase in the usage of such systems can be observed in the healthcare industry, for instance in the form of medical image classification systems, where these models have achieved diagnostic parity with human physicians. One such application where this can be observed is in computer vision tasks such as the classification of skin lesions in dermatoscopic images. However, as stakeholders in the healthcare industry, such as insurance companies, continue to invest extensively in machine learning infrastructure, it becomes increasingly important to understand the vulnerabilities in such systems. Due to the highly critical nature of the tasks being carried out by these machine learning models, it is necessary to analyze techniques that could be used to take advantage of these vulnerabilities and methods to defend against them. This paper explores common adversarial attack techniques. The Fast Sign Gradient Method and Projected Descent Gradient are used against a Convolutional Neural Network trained to classify dermatoscopic images of skin lesions. Following that, it also discusses one of the most popular adversarial defense techniques, adversarial training. The performance of the model that has been trained on adversarial examples is then tested against the previously mentioned attacks, and recommendations to improve neural networks robustness are thus provided based on the results of the experiment.
translated by 谷歌翻译
随着在各种算法和框架中更广泛地应用深度神经网络(DNN),安全威胁已成为其中之一。对抗性攻击干扰基于DNN的图像分类器,其中攻击者可以在其中故意添加不可察觉的对抗性扰动,以欺骗分类器。在本文中,我们提出了一种新颖的纯化方法,称为纯化的引导扩散模型(GDMP),以帮助保护分类器免受对抗性攻击。我们方法的核心是将纯化嵌入到deno的扩散概率模型(DDPM)的扩散denoisis过程中,以便其扩散过程可以逐渐添加的高斯噪声淹没对抗性的扰动,并且可以同时删除这两种声音。指导的deNoising过程。在我们在各个数据集中进行的全面实验中,提出的GDMP被证明可将对抗攻击造成的扰动降低到浅范围,从而显着提高了分类的正确性。 GDMP将鲁棒精度提高了5%,在CIFAR10数据集对PGD攻击下获得了90.1%。此外,GDMP在具有挑战性的Imagenet数据集上达到了70.94%的鲁棒性。
translated by 谷歌翻译
基于深度神经网络的医学图像系统容易受到对抗的例子。在文献中提出了许多防御机制,然而,现有的防御者假设被动攻击者对防御系统知之甚少,并没有根据防御改变攻击战略。最近的作品表明,一个强大的自适应攻击,攻击者被认为具有完全了解防御系统的知识,可以轻松绕过现有的防御。在本文中,我们提出了一种名为Medical Aegis的新型对抗性示例防御系统。据我们所知,医疗AEGIS是文献中的第一次防范,成功地解决了对医学图像的强烈适应性的对抗性示例攻击。医疗AEGIS拥有两层保护剂:第一层垫通过去除其高频分量而削弱了攻击的对抗性操纵能力,但对原始图像的分类性能构成了最小的影响;第二层盾牌学习一组每级DNN模型来预测受保护模型的登录。偏离屏蔽的预测表明对抗性示例。盾牌受到在我们的压力测试中的观察中的观察,即在DNN模型的浅层中存在坚固的小径,自适应攻击难以破坏。实验结果表明,建议的防御精确地检测了自适应攻击,模型推理的开销具有可忽略的开销。
translated by 谷歌翻译
虽然深入学习模型取得了前所未有的成功,但他们对逆势袭击的脆弱性引起了越来越关注,特别是在部署安全关键域名时。为了解决挑战,已经提出了鲁棒性改善的许多辩护策略,包括反应性和积极主动。从图像特征空间的角度来看,由于特征的偏移,其中一些人无法达到满足结果。此外,模型学习的功能与分类结果无直接相关。与他们不同,我们考虑基本上从模型内部进行防御方法,并在攻击前后调查神经元行为。我们观察到,通过大大改变为正确标签的神经元大大改变神经元来误导模型。受其激励,我们介绍了神经元影响的概念,进一步将神经元分为前,中间和尾部。基于它,我们提出神经元水平逆扰动(NIP),第一神经元水平反应防御方法对抗对抗攻击。通过强化前神经元并削弱尾部中的弱化,辊隙可以消除几乎所有的对抗扰动,同时仍然保持高良好的精度。此外,它可以通过适应性,尤其是更大的扰动来应对不同的扰动。在三个数据集和六种模型上进行的综合实验表明,NIP优于最先进的基线对抗11个对抗性攻击。我们进一步通过神经元激活和可视化提供可解释的证据,以便更好地理解。
translated by 谷歌翻译
虽然近年来,在2D图像领域的攻击和防御中,许多努力已经探讨了3D模型的脆弱性。现有的3D攻击者通常在点云上执行点明智的扰动,从而导致变形的结构或异常值,这很容易被人类察觉。此外,它们的对抗示例是在白盒设置下产生的,当转移到攻击远程黑匣子型号时经常遭受低成功率。在本文中,我们通过提出一种新的难以察觉的转移攻击(ITA):1)难以察觉的3D点云攻击来自两个新的和具有挑战性的观点:1)难以察觉:沿着邻域表面的正常向量限制每个点的扰动方向,导致产生具有类似几何特性的示例,从而增强了难以察觉。 2)可转移性:我们开发了一个对抗性转变模型,以产生最有害的扭曲,并强制实施对抗性示例来抵抗它,从而提高其对未知黑匣子型号的可转移性。此外,我们建议通过学习更辨别的点云表示来培训更强大的黑盒3D模型来防御此类ITA攻击。广泛的评估表明,我们的ITA攻击比最先进的人更令人无法察觉和可转让,并验证我们的国防战略的优势。
translated by 谷歌翻译
基于深度学习的图像识别系统已广泛部署在当今世界的移动设备上。然而,在最近的研究中,深入学习模型被证明易受对抗的例子。一种逆势例的一个变种,称为对抗性补丁,由于其强烈的攻击能力而引起了研究人员的注意。虽然对抗性补丁实现了高攻击成功率,但由于补丁和原始图像之间的视觉不一致,它们很容易被检测到。此外,它通常需要对文献中的对抗斑块产生的大量数据,这是计算昂贵且耗时的。为了解决这些挑战,我们提出一种方法来产生具有一个单一图像的不起眼的对抗性斑块。在我们的方法中,我们首先通过利用多尺度发生器和鉴别器来决定基于受害者模型的感知敏感性的补丁位置,然后以粗糙的方式产生对抗性斑块。鼓励修补程序与具有对抗性训练的背景图像一致,同时保留强烈的攻击能力。我们的方法显示了白盒设置中的强烈攻击能力以及通过对具有不同架构和培训方法的各种型号的广泛实验,通过广泛的实验进行黑盒设置的优异转移性。与其他对抗贴片相比,我们的对抗斑块具有最大忽略的风险,并且可以避免人类观察,这是由显着性图和用户评估结果的插图支持的人类观察。最后,我们表明我们的对抗性补丁可以应用于物理世界。
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
深度学习(DL)在许多与人类相关的任务中表现出巨大的成功,这导致其在许多计算机视觉的基础应用中采用,例如安全监控系统,自治车辆和医疗保健。一旦他们拥有能力克服安全关键挑战,这种安全关键型应用程序必须绘制他们的成功部署之路。在这些挑战中,防止或/和检测对抗性实例(AES)。对手可以仔细制作小型,通常是难以察觉的,称为扰动的噪声被添加到清洁图像中以产生AE。 AE的目的是愚弄DL模型,使其成为DL应用的潜在风险。在文献中提出了许多测试时间逃避攻击和对策,即防御或检测方法。此外,还发布了很少的评论和调查,理论上展示了威胁的分类和对策方法,几乎​​没有焦点检测方法。在本文中,我们专注于图像分类任务,并试图为神经网络分类器进行测试时间逃避攻击检测方法的调查。对此类方法的详细讨论提供了在四个数据集的不同场景下的八个最先进的探测器的实验结果。我们还为这一研究方向提供了潜在的挑战和未来的观点。
translated by 谷歌翻译
Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs.Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to * Pin-Yu Chen and Huan Zhang contribute equally to this work.
translated by 谷歌翻译
Neural networks are vulnerable to adversarial examples, which poses a threat to their application in security sensitive systems. We propose high-level representation guided denoiser (HGD) as a defense for image classification. Standard denoiser suffers from the error amplification effect, in which small residual adversarial noise is progressively amplified and leads to wrong classifications. HGD overcomes this problem by using a loss function defined as the difference between the target model's outputs activated by the clean image and denoised image. Compared with ensemble adversarial training which is the state-of-the-art defending method on large images, HGD has three advantages. First, with HGD as a defense, the target model is more robust to either white-box or black-box adversarial attacks. Second, HGD can be trained on a small subset of the images and generalizes well to other images and unseen classes. Third, HGD can be transferred to defend models other than the one guiding it. In NIPS competition on defense against adversarial attacks, our HGD solution won the first place and outperformed other models by a large margin. 1 * Equal contribution.
translated by 谷歌翻译
深度神经网络(DNNS)的广泛应用要求越来越多的关注对其现实世界的鲁棒性,即DNN是否抵抗黑盒对抗性攻击,其中包括基于得分的查询攻击(SQA)是最威胁性的。由于它们的实用性和有效性:攻击者只需要在模型输出上进行数十个查询即可严重伤害受害者网络。针对SQA的防御需要对用户的服务目的而略有但巧妙的输出变化,这些用户与攻击者共享相同的输出信息。在本文中,我们提出了一种称为统一梯度(UNIG)的现实世界防御,以统一不同数据的梯度,以便攻击者只能探究不同样本相似的较弱的攻击方向。由于这种普遍的攻击扰动的验证与投入特定的扰动相比,Unig通过指示攻击者一个扭曲且信息不足的攻击方向来保护现实世界中的DNN。为了增强Unig在现实世界应用中的实际意义,我们将其实现为Hadamard产品模块,该模块具有计算效率且很容易插入任何模型。根据对5个SQA和4个防御基线的广泛实验,Unig显着改善了现实世界的鲁棒性,而不会伤害CIFAR10和Imagenet上的清洁准确性。例如,Unig在2500 Query Square攻击下保持了77.80%精度的CIFAR-10模型,而最先进的对手训练的模型仅在CIFAR10上具有67.34%的速度。同时,Unig在清洁精度和输出的修改程度上大大超过了所有基准。代码将发布。
translated by 谷歌翻译
Deep 3D point cloud models are sensitive to adversarial attacks, which poses threats to safety-critical applications such as autonomous driving. Robust training and defend-by-denoise are typical strategies for defending adversarial perturbations, including adversarial training and statistical filtering, respectively. However, they either induce massive computational overhead or rely heavily upon specified noise priors, limiting generalized robustness against attacks of all kinds. This paper introduces a new defense mechanism based on denoising diffusion models that can adaptively remove diverse noises with a tailored intensity estimator. Specifically, we first estimate adversarial distortions by calculating the distance of the points to their neighborhood best-fit plane. Depending on the distortion degree, we choose specific diffusion time steps for the input point cloud and perform the forward diffusion to disrupt potential adversarial shifts. Then we conduct the reverse denoising process to restore the disrupted point cloud back to a clean distribution. This approach enables effective defense against adaptive attacks with varying noise budgets, achieving accentuated robustness of existing 3D deep recognition models.
translated by 谷歌翻译
对抗性训练(AT)是针对对抗分类系统的对抗性攻击的简单而有效的防御,这是基于增强训练设置的攻击,从而最大程度地提高了损失。但是,AT作为视频分类的辩护的有效性尚未得到彻底研究。我们的第一个贡献是表明,为视频生成最佳攻击需要仔细调整攻击参数,尤其是步骤大小。值得注意的是,我们证明最佳步长随攻击预算线性变化。我们的第二个贡献是表明,在训练时间使用较小(次优的)攻击预算会导致测试时的性能更加强大。根据这些发现,我们提出了三个防御攻击预算的攻击的防御。自适应AT的第一个技术是一种技术,该技术是从随着训练迭代进行的。第二个课程是一项技术,随着训练的迭代进行,攻击预算的增加。第三个生成的AT,与deno的生成对抗网络一起,以提高稳健的性能。 UCF101数据集上的实验表明,所提出的方法改善了针对多种攻击类型的对抗性鲁棒性。
translated by 谷歌翻译
深度神经网络容易受到通过对输入对难以察觉的变化进行制作的对抗性示例。但是,这些对手示例在适用于模型及其参数的白盒设置中最成功。寻找可转移到其他模型或在黑匣子设置中开发的对抗性示例显着更加困难。在本文中,我们提出了可转移的对抗性实例的方向聚集的对抗性攻击。我们的方法在攻击过程中使用聚集方向,以避免产生的对抗性示例在白盒模型上过度拟合。关于Imagenet的广泛实验表明,我们的提出方法显着提高了对抗性实例的可转移性,优于最先进的攻击,特别是对抗对抗性稳健的模型。我们所提出的方法的最佳平均攻击成功率达到94.6 \%,针对三种对手训练模型和94.8%抵御五种防御方法。它还表明,目前的防御方法不会阻止可转移的对抗性攻击。
translated by 谷歌翻译