基准标记通常用于导航辅助微创脊柱手术(Miss),他们帮助将图像坐标转移到现实世界坐标中。在实践中,这些标记可能位于视野(FOV)之外,由于术中手术中使用的C形臂锥形束计算机断层扫描(CBCT)系统的有限检测器尺寸。因此,CBCT体积中的重建标记遭受伪影并且具有扭曲的形状,其设定了导航的障碍。在这项工作中,我们提出了两个基准标记检测方法:直接检测从失真标记(直接方法)和标记恢复后检测(恢复方法)。为了直接检测重构体积中的失真标记,提出了一种使用两个神经网络和传统圆检测算法的有效的自动标记检测方法。对于标记恢复,提出了一种特定于任务的学习策略,以从严重截断的数据中恢复标记。之后,施加传统的标记检测算法用于位置检测。在模拟数据和实际数据上评估这两种方法,两者都可以实现小于0.2mm的标记配准误差。我们的实验表明,直接方法能够准确地检测扭曲的标记,并且具有任务特定学习的恢复方法对各种数据集具有高的鲁棒性和概括性。此外,特定于任务的学习能够准确地重建其他感兴趣的结构结构,例如,用于图像引导针活检的肋骨,来自严重截断的数据,从而使CBCT系统具有新的潜在应用。
translated by 谷歌翻译
脑转移经常发生在转移性癌症的患者中。早期和准确地检测脑转移对于放射治疗的治疗计划和预后至关重要。为了提高深入学习的脑转移检测性能,提出了一种称为体积级灵敏度特异性(VSS)的定制检测损失,该损失是单个转移检测灵敏度和(子)体积水平的特异性。作为敏感性和精度始终在转移水平中始终是折射率,可以通过调节VSS损耗中的重量而无需骰子分数系数进行分段转移来实现高精度或高精度。为了减少被检测为假阳性转移的转移样结构,提出了一种时间的现有量作为神经网络的额外输入。我们提出的VSS损失提高了脑转移检测的敏感性,将灵敏度提高了86.7%至95.5%。或者,它将精度提高了68.8%至97.8%。随着额外的时间现有量,在高灵敏度模型中,约45%的假阳性转移减少,高特异性模型的精度达到99.6%。所有转移的平均骰子系数约为0.81。随着高灵敏度和高特异性模型的集合,平均每位患者的1.5个假阳性转移需要进一步检查,而大多数真正的阳性转移确认。该集合学习能够区分从需要特殊专家审查或进一步跟进的转移候选人的高信心真正的阳性转移,特别适合实际临床实践中专家支持的要求。
translated by 谷歌翻译
肺部以外的视野(FOV)组织截断在常规的肺筛查计算机断层扫描(CT)中很常见。这对机会性CT的身体组成(BC)评估构成了局限性,因为缺少关键的解剖结构。传统上,扩展CT的FOV被认为是使用有限数据的CT重建问题。但是,这种方法依赖于应用程序中可能无法使用的投影域数据。在这项工作中,我们从语义图像扩展角度提出问题,该角度仅需要图像数据作为输入。提出的两阶段方法根据完整体的估计范围识别新的FOV边框,并在截短区域中渗出了缺失的组织。使用在FOV中具有完整主体的CT切片对训练样品进行模拟,从而使模型开发自制。我们使用有限FOV的肺筛选CT评估了所提出的方法在自动BC评估中的有效性。提出的方法有效地恢复了缺失的组织并减少了FOV组织截断引入的BC评估误差。在大规模肺部筛查CT数据集的BC评估中,这种校正既可以提高受试者内的一致性和与人体测量近似值的相关性。已开发的方法可在https://github.com/masilab/s-efov上获得。
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
估计X射线图像上的肺深度可以在临床常规期间提供精确的机会肺部体积估计,并提高现代结构胸部成像技术中的图像对比,如X射线暗场成像。我们提出了一种基于卷积神经网络的方法,允许每像素肺厚度估计和随后的总肺容量估计。使用从5250个真实CT扫描生成的5250个模拟Xco.NoRh,网络培训并验证了网络。此外,我们能够在真正的X线片上推断使用仿真数据训练的模型。对于45名患者,对标准临床射线照相进行定量和定性评估。基于患者对应的CT扫描来定义每个患者总肺体积的地面真理。 45个真实射线照片上的估计肺体积与地基体积之间的平均值误差为0.83升。核算患者直径时,误差会降至0.66升。辅助,我们预测了131 X射线照片的合成数据集上的肺部厚度,其中平均值误差为0.21升。结果表明,可以将在仿真模型中获得的知识转移到真正的X射线图像。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
金属伪影校正是锥形束计算机断层扫描(CBCT)扫描中的一个具有挑战性的问题。插入解剖结构的金属植入物在重建图像中导致严重的伪影。广泛使用的基于介入的金属伪像减少(MAR)方法需要对投影中的金属痕迹进行分割,这是一项艰巨的任务。一种方法是使用深度学习方法来细分投影中的金属。但是,深度学习方法的成功受到现实培训数据的可用性的限制。由于植入物边界和大量预测,获得可靠的地面真相注释是充满挑战和耗时的。我们建议使用X射线模拟从临床CBCT扫描中生成合成金属分割训练数据集。我们比较具有不同数量的光子的仿真效果,还比较了几种培训策略以增加可用数据。我们将模型在真实临床扫描中的性能与常规阈值MAR和最近的深度学习方法进行比较。我们表明,具有相对较少光子的模拟适用于金属分割任务,并且用全尺寸和裁剪的投影训练深度学习模型共同提高了模型的鲁棒性。我们显示出受严重运动,体素尺寸下采样和落水量金属影响的图像质量的显着改善。我们的方法可以轻松地在现有的基于投影的MAR管道中实现,以提高图像质量。该方法可以为准确分割CBCT投影中的金属提供新的范式。
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
创伤干预的阳性结果取决于插入的金属植入物的术中评价。由于金属伪影,该评估的质量大大取决于所谓的金属伪影减少方法(MAR)的性能。这些MAR方法中的大多数需要先前的插入金属物体分割。因此,尽管存在一些主要缺点,但是,施加在重建的3D体积中的基于基于阈值的分割方法的通常。利用本出版物,研究了将分割任务转移到基于学习的基于学习的视图 - 一致的2D投影的方法的可能性。为了分割本金属,研究了使用在CADaVer研究期间获得的真实数据进行培训的基于基于学习的2D投影明智的分割网络。为了克服与2D投影明智分割的缺点,提出了一种一致性滤波器。通过使用新的分段掩码将标准FSMAR的结果与修改后的FSMAR版本进行比较,研究了移位分割域的影响。对真实尸体数据进行定量和定性评估,调查方法显示了MAR性能增加和对金属伪影的不敏感性。对于重建外部的金属外部的金属或消失金属外壳的情况,可以显示伪影的显着降低。因此,增加到大约3 dB w.r.t.实现了所有切片的平均PSNR度量,单切片最多9 dB。所示结果揭示了转变对基于2D的分段方法的有益影响,以便使用MAS方法的下游使用的真实数据。
translated by 谷歌翻译
在核成像中,有限的分辨率会导致影响图像清晰度和定量准确性的部分体积效应(PVE)。已证明来自CT或MRI的高分辨率解剖信息的部分体积校正(PVC)已被证明是有效的。但是,这种解剖学引导的方法通常需要乏味的图像注册和分割步骤。由于缺乏具有高端CT和相关运动伪像的混合体SPECT/CT扫描仪,因此很难获得准确的分段器官模板,尤其是在心脏SPECT成像中。轻微的错误注册/错误分段将导致PVC后的图像质量严重降解。在这项工作中,我们开发了一种基于深度学习的方法,用于快速心脏SPECT PVC,而无需解剖信息和相关的器官分割。所提出的网络涉及密集连接的多维动态机制,即使网络经过充分训练,也可以根据输入图像对卷积内核进行调整。引入了心脏内血容量(IMBV)作为网络优化的附加临床损失函数。提出的网络表明,使用Technetium-99M标记的红细胞在GE发现NM/CT 570C专用心脏SPECT扫描仪上获得的28个犬类研究表现有希望的表现。这项工作表明,与没有这种机制的同一网络相比,具有密集连接的动态机制的提议网络产生了较高的结果。结果还表明,没有解剖信息的提出的网络可以与解剖学引导的PVC方法产生的图像产生具有统计上可比的IMBV测量的图像,这可能有助于临床翻译。
translated by 谷歌翻译
Deformable registration of two-dimensional/three-dimensional (2D/3D) images of abdominal organs is a complicated task because the abdominal organs deform significantly and their contours are not detected in two-dimensional X-ray images. We propose a supervised deep learning framework that achieves 2D/3D deformable image registration between 3D volumes and single-viewpoint 2D projected images. The proposed method learns the translation from the target 2D projection images and the initial 3D volume to 3D displacement fields. In experiments, we registered 3D-computed tomography (CT) volumes to digitally reconstructed radiographs generated from abdominal 4D-CT volumes. For validation, we used 4D-CT volumes of 35 cases and confirmed that the 3D-CT volumes reflecting the nonlinear and local respiratory organ displacement were reconstructed. The proposed method demonstrate the compatible performance to the conventional methods with a dice similarity coefficient of 91.6 \% for the liver region and 85.9 \% for the stomach region, while estimating a significantly more accurate CT values.
translated by 谷歌翻译
基于治疗期间的单投影图像的器官形状重建具有广泛的临床范围,例如在图像引导放射治疗和手术指导中。我们提出了一种图形卷积网络,该网络实现了用于单视点2D投影图像的3D器官网格的可变形登记。该框架使得能够同时训练两种类型的变换:从2D投影图像到位移图,以及从采样的每周顶点特征到满足网格结构的几何约束的3D位移。假设申请放射治疗,验证了2D / 3D可变形的登记性能,用于尚未瞄准迄今为止,即肝脏,胃,十二指肠和肾脏以及胰腺癌的多个腹部器官。实验结果表明,考虑多个器官之间的关系的形状预测可用于预测临床上可接受的准确性的数字重建射线照片的呼吸运动和变形。
translated by 谷歌翻译
我们为Covid-19的快速准确CT(DL-FACT)测试提供了一系列深度学习的计算框架。我们开发了基于CT的DL框架,通过基于DL的CT图像增强和分类来提高Covid-19(加上其变体)的测试速度和准确性。图像增强网络适用于DDNet,短暂的Dennet和基于Deconvolulate的网络。为了展示其速度和准确性,我们在Covid-19 CT图像的几个来源中评估了DL-FARE。我们的结果表明,DL-FACT可以显着缩短几天到几天的周转时间,并提高Covid-19测试精度高达91%。DL-FACT可以用作诊断和监测Covid-19的医学专业人员的软件工具。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
translated by 谷歌翻译
大型医学成像数据集变得越来越多。这些数据集中的一个普遍挑战是确保每个样本满足没有重要人工制品的最低质量要求。尽管已经开发出广泛的现有自动方法来识别医学成像中的缺陷和人工制品,但它们主要依赖于渴望数据的方法。特别是,缺乏可用于培训的手工艺品的足够扫描,在临床研究中设计和部署机器学习方面造成了障碍。为了解决这个问题,我们提出了一个具有四个主要组成部分的新颖框架:(1)一组受磁共振物理启发的手工艺发电机,以损坏大脑MRI扫描和增强培训数据集,(2)一组抽象和工程的功能,紧凑地表示图像,(3)一个特征选择过程,取决于人工制品的类别以提高分类性能,以及(4)一组受过训练以识别人工制品的支持向量机(SVM)分类器。我们的新颖贡献是三重的:首先,我们使用新型的基于物理的人工制品发生器来生成以受控的人工制品作为数据增强技术的合成脑MRI扫描。这将避免使用稀有人工制品的劳动密集型收集和标记过程。其次,我们提出了开发的大量抽象和工程图像特征,以识别9种不同的结构MRI伪像。最后,我们使用一个基于人工制品的功能选择块,该块,对于每类的人工制品,可以找到提供最佳分类性能的功能集。我们对具有人工生成的人工制品的大量数据扫描进行了验证实验,并且在一项多发性硬化症临床试验中,专家确定了真实的人工制品,这表明拟议管道表现优于传统方法。
translated by 谷歌翻译
X射线成像是最受欢迎的医学成像技术。虽然X射线射线造影相当成本效益,但组织结构沿X射线路径叠加。另一方面,计算断层扫描(CT)重建内部结构,但CT增加辐射剂量,复杂且昂贵。在这里,我们提出了“X射线分析缩放”,以在深度学习框架中以少量的射线照相投影来分化以数字的靶器官/组织提取靶器官/组织。作为示例性实施例,我们提出了一般的X射线分解网络,专用的X射线绝地形网络和X射线成像系统以实现这些功能。我们的实验表明,在这种情况下,可以实现X射线立体术中孤立的器官,如这种情况下,表明将常规放射线读数转化为孤立器官的立体检查的可行性,这可能允许更高的敏感性和特异性,甚至目标的断层可视化。随着进一步的改进,X射线分解缩放有望成为辐射剂量和系统成本的CT级诊断的新X射线成像模型,与射线照相或造影术成像相当。
translated by 谷歌翻译
使用增强现实(AR)用于导航目的,这表明在手术手术过程中协助医生有益。这些应用通常需要知道外科手术工具和患者的姿势,以提供外科医生在任务执行过程中可以使用的视觉信息。现有的医学级跟踪系统使用放置在手术室内的红外摄像头(OR)来识别感兴趣的对象附加并计算其姿势的复古反射标记。一些市售的AR头式显示器(HMD)使用类似的摄像头进行自定位,手动跟踪和估算对象的深度。这项工作提出了一个使用AR HMD的内置摄像机来准确跟踪复古反射标记的框架,例如在手术过程中使用的标记,而无需集成任何其他组件。该框架还能够同时跟踪多个工具。我们的结果表明,横向翻译的准确度为0.09 +-0.06毫米,可以实现标记的跟踪和检测,纵向翻译的0.42 +-0.32 mm,绕垂直轴旋转的0.80 +-0.39 ver。此外,为了展示所提出的框架的相关性,我们在手术程序的背景下评估了系统的性能。该用例旨在在骨科过程中复制K-Wire插入的场景。为了进行评估,为两名外科医生和一名生物医学研究人员提供了视觉导航,每次都进行了21次注射。该用例的结果提供了与基于AR的导航程序报告的相当精度。
translated by 谷歌翻译