具有非平凡大规模拓扑的数据集可能很难嵌入具有现有维度降低算法的低维欧几里得空间中。我们建议使用向量束对拓扑复杂的数据集建模,以使基本空间解释大型拓扑,而纤维则解释了局部几何形状。这使人们可以在保留大规模拓扑的同时降低纤维的尺寸。我们将此观点形式化,并且作为一个应用程序,我们描述了一种算法,该算法将数据集和在欧几里得空间中的初始表示形式一起作为输入,假定其大规模拓扑的一部分,并输出了一种新的表示,并输出一种新的表示形式,该表示是集成了沿着初始全局表示,通过局部线性维度降低获得的局部表示。我们在来自动态系统和化学的示例上证明了这种算法。在这些示例中,与各种基于众所周知的基于度量的降低算法相比,我们的算法能够在较低的目标维度中学习拓扑忠实的数据嵌入。
translated by 谷歌翻译
The circular coordinates algorithm of de Silva, Morozov, and Vejdemo-Johansson takes as input a dataset together with a cohomology class representing a $1$-dimensional hole in the data; the output is a map from the data into the circle that captures this hole, and that is of minimum energy in a suitable sense. However, when applied to several cohomology classes, the output circle-valued maps can be "geometrically correlated" even if the chosen cohomology classes are linearly independent. It is shown in the original work that less correlated maps can be obtained with suitable integer linear combinations of the cohomology classes, with the linear combinations being chosen by inspection. In this paper, we identify a formal notion of geometric correlation between circle-valued maps which, in the Riemannian manifold case, corresponds to the Dirichlet form, a bilinear form derived from the Dirichlet energy. We describe a systematic procedure for constructing low energy torus-valued maps on data, starting from a set of linearly independent cohomology classes. We showcase our procedure with computational examples. Our main algorithm is based on the Lenstra--Lenstra--Lov\'asz algorithm from computational number theory.
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
在此备忘录中,我们开发了一般框架,它允许同时研究$ \ MathBB R ^ D $和惠特尼在$ \ Mathbb r的离散和非离散子集附近的insoctry扩展问题附近的标签和未标记的近对准数据问题。^ d $与某些几何形状。此外,我们调查了与集群,维度减少,流形学习,视觉以及最小的能量分区,差异和最小最大优化的相关工作。给出了谐波分析,计算机视觉,歧管学习和与我们工作的信号处理中的众多开放问题。本发明内容中的一部分工作基于纸张中查尔斯Fefferman的联合研究[48],[49],[50],[51]。
translated by 谷歌翻译
我们研究了紧凑型歧管M上的回归问题。为了利用数据的基本几何形状和拓扑结构,回归任务是基于歧管的前几个特征函数执行的,该特征是歧管的laplace-beltrami操作员,通过拓扑处罚进行正规化。提出的惩罚基于本征函数或估计功能的子级集的拓扑。显示总体方法可在合成和真实数据集上对各种应用产生有希望的和竞争性能。我们还根据回归函数估计,其预测误差及其平滑度(从拓扑意义上)提供理论保证。综上所述,这些结果支持我们方法在目标函数“拓扑平滑”的情况下的相关性。
translated by 谷歌翻译
在机器学习中调用多种假设需要了解歧管的几何形状和维度,理论决定了需要多少样本。但是,在应用程序数据中,采样可能不均匀,歧管属性是未知的,并且(可能)非纯化;这意味着社区必须适应本地结构。我们介绍了一种用于推断相似性内核提供数据的自适应邻域的算法。从本地保守的邻域(Gabriel)图开始,我们根据加权对应物进行迭代率稀疏。在每个步骤中,线性程序在全球范围内产生最小的社区,并且体积统计数据揭示了邻居离群值可能违反了歧管几何形状。我们将自适应邻域应用于非线性维度降低,地球计算和维度估计。与标准算法的比较,例如使用K-Nearest邻居,证明了它们的实用性。
translated by 谷歌翻译
深度神经网络被广泛用于解决多个科学领域的复杂问题,例如语音识别,机器翻译,图像分析。用于研究其理论特性的策略主要依赖于欧几里得的几何形状,但是在过去的几年中,已经开发了基于Riemannian几何形状的新方法。在某些开放问题的动机中,我们研究了歧管之间的特定地图序列,该序列的最后一个歧管配备了riemannian指标。我们研究了序列的其他歧管和某些相关商的结构引起的槽撤回。特别是,我们表明,最终的riemannian度量的回调到该序列的任何歧管是一个退化的riemannian度量,诱导了伪模空间的结构,我们表明,该伪仪的kolmogorov商均产生了平滑的歧管,这是基础的,这是基础,这是基础的基础。特定垂直束的空间。我们研究了此类序列图的理论属性,最终我们着重于实施实际关注神经网络的流形之间的地图,并介绍了本文第一部分中引入的几何框架的某些应用。
translated by 谷歌翻译
给定图形或相似性矩阵,我们考虑了恢复节点之间真实距离的概念以及它们的真实位置的问题。我们证明这可以通过两个步骤完成:矩阵分解,然后进行非线性尺寸降低。这种组合之所以有效,是因为在第一步中获得的点云一直生活在歧管上,其中潜在距离被编码为地球距离。因此,一个非线性降低尺寸的工具,即近似地球距离,可以恢复潜在位置,直至简单的转换。我们详细说明了使用光谱嵌入,其次是ISOMAP的情况,并为其他技术组合提供了令人鼓舞的实验证据。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
本文介绍了一组数字方法,用于在不变(弹性)二阶Sobolev指标的设置中对3D表面进行Riemannian形状分析。更具体地说,我们解决了代表为3D网格的参数化或未参数浸入式表面之间的测量学和地球距离的计算。在此基础上,我们为表面集的统计形状分析开发了工具,包括用于估算Karcher均值并在形状群体上执行切线PCA的方法,以及计算沿表面路径的平行传输。我们提出的方法从根本上依赖于通过使用Varifold Fidelity术语来为地球匹配问题提供轻松的变异配方,这使我们能够在计算未参数化表面之间的地理位置时强制执行重新训练的独立性,同时还可以使我们能够与多用途算法相比,使我们能够将表面与vare表面进行比较。采样或网状结构。重要的是,我们演示了如何扩展放松的变分框架以解决部分观察到的数据。在合成和真实的各种示例中,说明了我们的数值管道的不同好处。
translated by 谷歌翻译
在本文中,我们使用拓扑数据分析技术来构造合适的神经网络分类器,用于根据其参考指定系统来构建整个发电厂的传感器信号的任务。我们使用持久性图的表示来推导必要的预处理步骤并可视化大量数据。我们使用一维卷积层的深度架构,与堆叠的长短期存储器相结合,作为适合于处理持久性特征的剩余网络。我们组合了三个单独的子网,获得了输入时间序列本身和零级持续同源的表示。我们为大多数使用的超参数提供了数学推导。为了验证,使用来自相同结构类型的四个发电厂的传感器数据进行数值实验。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
Riemannian geometry provides powerful tools to explore the latent space of generative models while preserving the inherent structure of the data manifold. Lengths, energies and volume measures can be derived from a pullback metric, defined through the immersion that maps the latent space to the data space. With this in mind, most generative models are stochastic, and so is the pullback metric. Manipulating stochastic objects is strenuous in practice. In order to perform operations such as interpolations, or measuring the distance between data points, we need a deterministic approximation of the pullback metric. In this work, we are defining a new metric as the expected length derived from the stochastic pullback metric. We show this metric is Finslerian, and we compare it with the expected pullback metric. In high dimensions, we show that the metrics converge to each other at a rate of $\mathcal{O}\left(\frac{1}{D}\right)$.
translated by 谷歌翻译
Experimental sciences have come to depend heavily on our ability to organize, interpret and analyze high-dimensional datasets produced from observations of a large number of variables governed by natural processes. Natural laws, conservation principles, and dynamical structure introduce intricate inter-dependencies among these observed variables, which in turn yield geometric structure, with fewer degrees of freedom, on the dataset. We show how fine-scale features of this structure in data can be extracted from \emph{discrete} approximations to quantum mechanical processes given by data-driven graph Laplacians and localized wavepackets. This data-driven quantization procedure leads to a novel, yet natural uncertainty principle for data analysis induced by limited data. We illustrate the new approach with algorithms and several applications to real-world data, including the learning of patterns and anomalies in social distancing and mobility behavior during the COVID-19 pandemic.
translated by 谷歌翻译
我们将最初在多维扩展和降低多元数据的降低领域发展为功能设置。我们专注于经典缩放和ISOMAP - 在这些领域中起重要作用的原型方法 - 并在功能数据分析的背景下展示它们的使用。在此过程中,我们强调了环境公制扮演的关键作用。
translated by 谷歌翻译
我们介绍了一种算法,用于计算采样歧管的测量测量算法,其依赖于对采样数据的植物嵌入的曲线图的模拟。我们的方法利用经典的结果在半导体分析和量子古典对应中,并形成用于学习数据集的歧管的技术的基础,随后用于高维数据集的非线性维度降低。我们以基于CoVID-19移动数据的聚类演示,从模型歧管中采样数据采样的数据,并通过集群演示来说明新的算法。最后,我们的方法揭示了数据采样和量化提供的离散化之间有趣的连接。
translated by 谷歌翻译
Riemannian优化是解决优化问题的原则框架,其中所需的最佳被限制为光滑的歧管$ \ Mathcal {M} $。在此框架中设计的算法通常需要对歧管的几何描述,该描述通常包括切线空间,缩回和成本函数的梯度。但是,在许多情况下,由于缺乏信息或棘手的性能,只能访问这些元素的子集(或根本没有)。在本文中,我们提出了一种新颖的方法,可以在这种情况下执行近似Riemannian优化,其中约束歧管是$ \ r^{d} $的子手机。至少,我们的方法仅需要一组无噪用的成本函数$(\ x_ {i},y_ {i})\ in {\ mathcal {m}} \ times \ times \ times \ times \ times \ mathbb {r} $和内在的歧管$ \ MATHCAL {M} $的维度。使用样品,并利用歧管-MLS框架(Sober和Levin 2020),我们构建了缺少的组件的近似值,这些组件娱乐可证明的保证并分析其计算成本。如果某些组件通过分析给出(例如,如果成本函数及其梯度明确给出,或者可以计算切线空间),则可以轻松地适应该算法以使用准确的表达式而不是近似值。我们使用我们的方法分析了基于Riemannian梯度的方法的全球收敛性,并从经验上证明了该方法的强度,以及基于类似原理的共轭梯度类型方法。
translated by 谷歌翻译
持续的同源性(PH)是拓扑数据分析中最流行的方法之一。尽管PH已用于许多不同类型的应用程序中,但其成功背后的原因仍然难以捉摸。特别是,尚不知道哪种类别的问题最有效,或者在多大程度上可以检测几何或拓扑特征。这项工作的目的是确定pH在数据分析中比其他方法更好甚至更好的问题。我们考虑三个基本形状分析任务:从形状采样的2D和3D点云中检测孔数,曲率和凸度。实验表明,pH在这些任务中取得了成功,超过了几个基线,包括PointNet,这是一个精确地受到点云的属性启发的体系结构。此外,我们观察到,pH对于有限的计算资源和有限的培训数据以及分布外测试数据,包括各种数据转换和噪声,仍然有效。
translated by 谷歌翻译
In this work we study statistical properties of graph-based algorithms for multi-manifold clustering (MMC). In MMC the goal is to retrieve the multi-manifold structure underlying a given Euclidean data set when this one is assumed to be obtained by sampling a distribution on a union of manifolds $\mathcal{M} = \mathcal{M}_1 \cup\dots \cup \mathcal{M}_N$ that may intersect with each other and that may have different dimensions. We investigate sufficient conditions that similarity graphs on data sets must satisfy in order for their corresponding graph Laplacians to capture the right geometric information to solve the MMC problem. Precisely, we provide high probability error bounds for the spectral approximation of a tensorized Laplacian on $\mathcal{M}$ with a suitable graph Laplacian built from the observations; the recovered tensorized Laplacian contains all geometric information of all the individual underlying manifolds. We provide an example of a family of similarity graphs, which we call annular proximity graphs with angle constraints, satisfying these sufficient conditions. We contrast our family of graphs with other constructions in the literature based on the alignment of tangent planes. Extensive numerical experiments expand the insights that our theory provides on the MMC problem.
translated by 谷歌翻译
我们使用运输公制(Delon和Desolneux 2020)中的单变量高斯混合物中的任意度量空间$ \ MATHCAL {X} $研究数据表示。我们得出了由称为\ emph {Probabilistic Transfersers}的小神经网络实现的特征图的保证。我们的保证是记忆类型:我们证明了深度约为$ n \ log(n)$的概率变压器和大约$ n^2 $ can bi-h \'{o} lder嵌入任何$ n $ - 点数据集从低度量失真的$ \ Mathcal {x} $,从而避免了维数的诅咒。我们进一步得出了概率的bi-lipschitz保证,可以兑换失真量和随机选择的点与该失真的随机选择点的可能性。如果$ \ MATHCAL {X} $的几何形状足够规律,那么我们可以为数据集中的所有点获得更强的Bi-Lipschitz保证。作为应用程序,我们从Riemannian歧管,指标和某些类型的数据集中获得了神经嵌入保证金组合图。
translated by 谷歌翻译