立场检测旨在确定文本的作者是否赞成,反对或中立。这项任务的主要挑战是两个方面的:由于不同目标以及缺乏目标的上下文信息而产生的几乎没有学习。现有作品主要通过设计基于注意力的模型或引入嘈杂的外部知识来解决第二期,而第一个问题仍未探索。在本文中,受到预训练的语言模型(PLM)的潜在能力(PLM)的启发,我们建议介绍基于立场检测的及时基于迅速的微调。 PLM可以为目标提供基本的上下文信息,并通过提示启用几次学习。考虑到目标在立场检测任务中的关键作用,我们设计了目标感知的提示并提出了一种新颖的语言。我们的语言器不会将每个标签映射到具体单词,而是将每个标签映射到矢量,并选择最能捕获姿势与目标之间相关性的标签。此外,为了减轻通过单人工提示来处理不同目标的可能缺陷,我们建议将信息从多个提示中学到的信息提炼。实验结果表明,我们提出的模型在全数据和少数场景中的表现出色。
translated by 谷歌翻译
预先接受的语言模型实现了最先进的导致各种自然语言处理(NLP)任务。 GPT-3表明,缩放预先训练的语言模型可以进一步利用它们的巨大潜力。最近提出了一个名为Ernie 3.0的统一框架,以预先培训大型知识增强型号,并培训了具有10亿参数的模型。 Ernie 3.0在各种NLP任务上表现出最先进的模型。为了探讨缩放的表现,我们培养了百卢比的3.0泰坦参数型号,在PaddlePaddle平台上有高达260亿参数的泰坦。此外,我们设计了一种自我监督的对抗性损失和可控语言建模损失,以使ERNIE 3.0 TITAN产生可信和可控的文本。为了减少计算开销和碳排放,我们向Ernie 3.0泰坦提出了一个在线蒸馏框架,教师模型将同时教授学生和培训。埃塞尼3.0泰坦是迄今为止最大的中国密集预训练模型。经验结果表明,Ernie 3.0泰坦在68个NLP数据集中优于最先进的模型。
translated by 谷歌翻译
对话中的情感认可(ERC)旨在检测给定对话中每种话语的情感。新提出的ERC模型利用了预培训的语言模型(PLM),并具有预训练和微调的范式,以获得良好的性能。但是,这些模型很少利用PLM的优势,并且对于缺乏明确的情感表达的对话而表现不佳。为了充分利用与话语中情感表达相关的潜在知识,我们提出了一种新颖的ERC模型Cisper,并使用新的及时和语言模型(LM)调整范式提出。具体而言,Cisper配备了及时融合与对话者的话语相关的上下文信息和常识,以更有效地实现ERC。我们的广泛实验表明,Cisper在最新的ERC模型中的出色表现以及利用这两种重要及时及时提高信息的有效性。为了方便地重现我们的实验结果,Cisper的Sourcecode和数据集已在https://github.com/deqingyang/cisper上共享。
translated by 谷歌翻译
迅速调整,它冻结了预审计的语言模型(PLM),只有微调的几个额外软提示的参数,在PLM具有数十亿个参数时,对全参数微调(即模型调整)显示出具有竞争性的性能,但仍然显示出竞争力。在较小的PLM的情况下,性能差。因此,迅速转移(POT),通过训练有素的类似源任务的提示来初始化目标提示,最近提议改善及时调整。但是,这样的香草锅方法通常会实现次优的性能,因为(i)锅对源目标对的相似性和(ii)直接对目标提示进行初始提示的提示敏感,而目标任务可能会导致灾难性忘记来源知识。为了解决这些问题,我们提出了一个新的指标,以准确预测及时的转移性(关于(i)),以及一种利用知识蒸馏技术将“知识”从源提示转移到的新颖的锅方法(即熊猫)目标以微妙的方式提示,并有效缓解灾难性遗忘(关于(ii))。此外,为了实现每个源目标对的自适应及时转移,我们使用指标来控制熊猫方法中的知识转移。对PLM的5个量表的21个源和9个目标数据集的189组组合进行了广泛而系统的实验,表明:1)我们提出的指标很好地预测了及时的可传递性; 2)在所有任务和型号中,我们的熊猫始终优于香草锅的平均得分2.3%(最高24.1%); 3)通过我们的熊猫方法,及时调整可以比在各种PLM量表场景中的模型调整来实现竞争性甚至更好的性能。接受代码和模型将在接受后发布。
translated by 谷歌翻译
最近的几种方法,例如参数有效的微调(PEFT)和模式开发训练(PET),在标签筛选设置中取得了令人印象深刻的结果。但是,它们很难使用,因为它们会受到手动制作的提示的高度可变性,并且通常需要十亿参数语言模型才能达到高精度。为了解决这些缺点,我们提出了SETFIT(句子变压器微调),这是一个有效且迅速的框架,用于对句子变形金刚(ST)进行几次微调。 SetFit首先以对比的暹罗方式对少数文本对进行微调验证的st。然后将所得模型用于生成丰富的文本嵌入,这些嵌入方式用于训练分类头。这个简单的框架不需要任何提示或口头化,并且比现有技术少的参数较少,因此可以实现高精度。我们的实验表明,SetFit通过PEFT和PET技术获得了可比的结果,同时训练的速度更快。我们还表明,SETFIT可以通过简单地切换ST主体来应用于多语言设置。我们的代码可从https://github.com/huggingface/setFit以及我们的数据集获得,网址为https://huggingface.co/setfit。
translated by 谷歌翻译
The spread of rumors along with breaking events seriously hinders the truth in the era of social media. Previous studies reveal that due to the lack of annotated resources, rumors presented in minority languages are hard to be detected. Furthermore, the unforeseen breaking events not involved in yesterday's news exacerbate the scarcity of data resources. In this work, we propose a novel zero-shot framework based on prompt learning to detect rumors falling in different domains or presented in different languages. More specifically, we firstly represent rumor circulated on social media as diverse propagation threads, then design a hierarchical prompt encoding mechanism to learn language-agnostic contextual representations for both prompts and rumor data. To further enhance domain adaptation, we model the domain-invariant structural features from the propagation threads, to incorporate structural position representations of influential community response. In addition, a new virtual response augmentation method is used to improve model training. Extensive experiments conducted on three real-world datasets demonstrate that our proposed model achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
translated by 谷歌翻译
姿态检测的目标是确定以目标朝向目标的文本中表达的视点。这些观点或上下文通常以许多不同的语言表达,这取决于用户和平台,这可以是本地新闻插座,社交媒体平台,新闻论坛等。然而,姿态检测的大多数研究已经限于使用单一语言和几个有限的目标,在交叉舌姿态检测很少有效。此外,标记数据的非英语来源通常稀缺,并具有额外的挑战。最近,大型多语言语言模型在许多非英语任务上大大提高了性能,尤其是具有有限数量的示例。这突出了模型预培训的重要性及其从少数例子中学习的能力。在本文中,我们展示了对日期交叉姿态检测的最全面的研究:我们在6名语言系列中使用12种语言的12种不同的数据集进行实验,每个都有6个低资源评估设置。对于我们的实验,我们构建了模式开发培训,提出了添加一种新颖的标签编码器来简化言语程序。我们进一步提出了基于情绪的姿态数据进行预培训,这在与几个强的基线相比,在低拍摄环境中显示了大量的6%F1绝对的增长。
translated by 谷歌翻译
Given the success with in-context learning of large pre-trained language models, we introduce in-context learning distillation to transfer in-context few-shot learning ability from large models to smaller models. We propose to combine in-context learning objectives with language modeling objectives to distill both the ability to read in-context examples and task knowledge to the smaller models. We perform in-context learning distillation under two different few-shot learning paradigms: Meta In-context Tuning (Meta-ICT) and Multitask In-context Tuning (Multitask-ICT). Multitask-ICT performs better on multitask few-shot learning but also requires more computation than Meta-ICT. Our method shows consistent improvements for both Meta-ICT and Multitask-ICT on two benchmarks: LAMA and CrossFit. Our extensive experiments and analysis reveal that in-context learning objectives and language modeling objectives are complementary under the Multitask-ICT paradigm. In-context learning objectives achieve the best performance when combined with language modeling objectives.
translated by 谷歌翻译
How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.
translated by 谷歌翻译
Controllable Text Generation (CTG) is emerging area in the field of natural language generation (NLG). It is regarded as crucial for the development of advanced text generation technologies that are more natural and better meet the specific constraints in practical applications. In recent years, methods using large-scale pre-trained language models (PLMs), in particular the widely used transformer-based PLMs, have become a new paradigm of NLG, allowing generation of more diverse and fluent text. However, due to the lower level of interpretability of deep neural networks, the controllability of these methods need to be guaranteed. To this end, controllable text generation using transformer-based PLMs has become a rapidly growing yet challenging new research hotspot. A diverse range of approaches have emerged in the recent 3-4 years, targeting different CTG tasks which may require different types of controlled constraints. In this paper, we present a systematic critical review on the common tasks, main approaches and evaluation methods in this area. Finally, we discuss the challenges that the field is facing, and put forward various promising future directions. To the best of our knowledge, this is the first survey paper to summarize CTG techniques from the perspective of PLMs. We hope it can help researchers in related fields to quickly track the academic frontier, providing them with a landscape of the area and a roadmap for future research.
translated by 谷歌翻译
大型预训练的语言模型(PLM)的最新进展导致了自然语言理解(NLU)任务的令人印象深刻的增长,并具有特定于任务的微调。但是,直接调整PLM在很大程度上依赖大量的标记实例,这些实例通常很难获得。迅速对PLM的调整已被证明对各种少数次任务很有价值。现有的作品研究基于迅速的NLU任务的基于及时的调整,主要集中于用语言器来得出正确的标签单词或生成及时的模板,以从PLM中启发语义。此外,还对常规数据增强方法进行了验证,可用于少量射击任务。但是,目前几乎没有针对基于及时的调整范式设计的数据增强方法。因此,我们研究了迅速的少数射击学习者的新数据增强问题。由于标签语义对于迅速的调整至关重要,因此我们提出了一种新颖的标签引导数据增强方法促进DA,该方法利用了丰富的标签语义信息以进行数据增强。很少的文本分类任务的广泛实验结果表明,我们提出的框架通过有效利用标签语义和数据扩展来实现自然语言理解来实现卓越的性能。
translated by 谷歌翻译
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF-better few-shot fine-tuning of language models 1 -a suite of simple and complementary techniques for finetuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning. 2 * The first two authors contributed equally. 1 Alternatively, language models' best friends forever. 2 Our implementation is publicly available at https:// github.com/princeton-nlp/LM-BFF.
translated by 谷歌翻译
迅速的学习方法通​​过诱导更好的几次表现,在他们仍然遵循基于参数的学习范式的同时,引起了自然语言处理的波动。学习中的遗忘和死记硬背的记忆问题可能会遇到不稳定的概括问题。具体而言,香草及时的学习可能难以利用死记硬背的非典型实例,在完全监督的培训或过度贴身模式的情况下使用低射击数据。为了减轻此类局限性,我们以将知识从记忆中解耦的动机发展为有助于模型在概括和记忆之间取得平衡。与香草及时学习相反,重新启动构造了培训实例中的开放式知识店,并在输入,培训和推理过程中实现检索机制,从而使该模型能够从培训语料库中检索相关环境作为能力为提示增强。广泛的实验表明,Retroppt可以在几次射击和零拍设置中获得更好的性能。此外,我们进一步说明,我们提出的撤退可以通过新数据集获得更好的概括能力。对记忆的详细分析确实显示逆转可以减少语言模型对记忆的依赖;因此,改善下游任务的概括。
translated by 谷歌翻译
Stance detection refers to the task of extracting the standpoint (Favor, Against or Neither) towards a target in given texts. Such research gains increasing attention with the proliferation of social media contents. The conventional framework of handling stance detection is converting it into text classification tasks. Deep learning models have already replaced rule-based models and traditional machine learning models in solving such problems. Current deep neural networks are facing two main challenges which are insufficient labeled data and information in social media posts and the unexplainable nature of deep learning models. A new pre-trained language model chatGPT was launched on Nov 30, 2022. For the stance detection tasks, our experiments show that ChatGPT can achieve SOTA or similar performance for commonly used datasets including SemEval-2016 and P-Stance. At the same time, ChatGPT can provide explanation for its own prediction, which is beyond the capability of any existing model. The explanations for the cases it cannot provide classification results are especially useful. ChatGPT has the potential to be the best AI model for stance detection tasks in NLP, or at least change the research paradigm of this field. ChatGPT also opens up the possibility of building explanatory AI for stance detection.
translated by 谷歌翻译
文本情绪分析(也称为意见挖掘)是对实体表达的人们观点,评估,态度和情感的计算的研究。文本情绪分析可以分为文本级别的情感分析,森林级别的情感分析和方面级别的情感分析。基于方面的情感分析(ABSA)是情感分析领域中的精细任务,该任务旨在预测各个方面的极性。训练前神经模型的研究显着改善了许多自然语言处理任务的性能。近年来,培训模型(PTM)已在ABSA中应用。因此,有一个问题,即PTM是否包含ABSA的足够的句法信息。在本文中,我们探讨了最近的Deberta模型(解码增强的BERT,并引起注意),以解决基于方面的情感分析问题。 Deberta是一种基于Transformer的神经语言模型,它使用自我监督的学习来预先培训大量原始文本语料库。基于局部环境重点(LCF)机制,通过整合Deberta模型,我们为基于方面的情感分析的多任务学习模型。该实验导致了Semeval-2014最常用的笔记本电脑和餐厅数据集,而ACL Twitter数据集则表明,具有Deberta的LCF机制具有显着改善。
translated by 谷歌翻译
及时调整是将预训练模型调整到下游任务的极其有效的工具。但是,基于标准及时的方法主要考虑下游任务的足够数据的情况。目前尚不清楚是否可以将优势传输到几杆式制度,在每个下游任务中只有有限的数据。尽管有些作品证明了在几次弹奏设置下及时调整的潜力,但通过搜索离散提示或使用有限数据调整软提示的主流方法仍然非常具有挑战性。通过广泛的实证研究,我们发现迅速调整和完全微调之间的学习差距仍然存在差距。为了弥合差距,我们提出了一个新的及时调整框架,称为软模板调整(STT)。 STT结合了手册和自动提示,并将下游分类任务视为掩盖语言建模任务。对不同设置的全面评估表明,STT可以在不引入其他参数的情况下缩小微调和基于及时的方法之间的差距。值得注意的是,它甚至可以胜过情感分类任务的时间和资源消耗的微调方法。
translated by 谷歌翻译
提示方法被认为是几次自然语言处理的关键进展之一。最近对基于离散令牌的``硬提示''转移到连续``软提示''的最新研究,这些提示将可学习的向量用作伪提示代币并实现更好的性能。尽管显示出有希望的前景,但观察到这些软宣传的方法在很大程度上依赖良好的初始化来生效。不幸的是,获得软提示的完美初始化需要了解内在语言模型的工作和精心设计,这绝非易事,必须从头开始重新启动每个新任务。为了解决此问题,我们提出了一种称为Metaprompting的广义软提示方法,该方法采用了良好认可的模型 - 静态元学习算法,以自动找到更好的及时初始化,从而快速适应新的促进任务。问题并在四个不同的数据集上带来了显着改善(1次设置的准确性提高了6分),从而实现了新的最新性能。
translated by 谷歌翻译
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resourcerestricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large "teacher" BERT can be effectively transferred to a small "student" Tiny-BERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pretraining and task-specific learning stages. This framework ensures that TinyBERT can capture the general-domain as well as the task-specific knowledge in BERT. TinyBERT 41 with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERT BASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT 4 is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only ∼28% parameters and ∼31% inference time of them. Moreover, TinyBERT 6 with 6 layers performs on-par with its teacher BERT BASE .
translated by 谷歌翻译
持续的19日大流行造成了全世界人民的不可估量的损失。为了遏制病毒的传播并进一步减轻危机,已经发布了各种健康政策(例如,在家命令),随着用户转向社交媒体分享他们的态度,他们引发了热烈讨论。在本文中,我们考虑了有关大流行病的立场检测(即跨目标和零照片设置)的更现实的场景,并提出了一个基于对抗性的学习立场分类器,以自动识别公众对与COVID相关健康健康相关健康的态度政策。具体而言,我们采用对抗性学习,使模型可以训练大量标记的数据并从源主题中捕获可转移的知识,从而使具有稀疏标记数据的新兴健康政策概括。同时,设计了一个地理编码器,鼓励模型学习每个区域指定的未观察到的上下文因素,并将其表示为非文本信息,以增强模型的更深入的理解。我们评估了与CoVID-19相关策略的立场检测任务中广泛基线的性能,实验结果表明,我们提出的方法在跨目标和零击设置中都达到了最新的性能。
translated by 谷歌翻译
Pre-trained language models (PLMs) have exhibited remarkable few-shot learning capabilities when provided a few examples in a natural language prompt as demonstrations of test instances, i.e., in-context learning. However, the performance of in-context learning is susceptible to the choice of prompt format, training examples and the ordering of the training examples. In this paper, we propose a novel nearest-neighbor calibration framework for in-context learning to ease this issue. It is inspired by a phenomenon that the in-context learning paradigm produces incorrect labels when inferring training instances, which provides a useful supervised signal to calibrate predictions. Thus, our method directly augments the predictions with a $k$-nearest-neighbor ($k$NN) classifier over a datastore of cached few-shot instance representations obtained by PLMs and their corresponding labels. Then adaptive neighbor selection and feature regularization modules are introduced to make full use of a few support instances to reduce the $k$NN retrieval noise. Experiments on various few-shot text classification tasks demonstrate that our method significantly improves in-context learning, while even achieving comparable performance with state-of-the-art tuning-based approaches in some sentiment analysis tasks.
translated by 谷歌翻译