最近联合学习(FL)范式的潜在假设是本地模型通常与全局模型共享与全局模型相同的网络架构,这对于具有不同的硬件和基础架构的移动和IOT设备变得不切实际。可扩展的联合学习框架应该解决配备不同计算和通信功能的异构客户端。为此,本文提出了一种新的联合模型压缩框架,它将异构低级模型分配给客户端,然后将它们聚合到全局全级模型中。我们的解决方案使得能够培训具有不同计算复杂性的异构本地模型,并汇总单个全局模型。此外,FEDHM不仅降低了设备的计算复杂性,而且还通过使用低秩模型来降低通信成本。广泛的实验结果表明,我们提出的\ System在测试顶-1精度(平均精度4.6%的精度增益)方面优于现行修剪的液体方法,在各种异构流域下较小的型号尺寸(平均较小为1.5倍) 。
translated by 谷歌翻译
Federated Learning (FL) is extensively used to train AI/ML models in distributed and privacy-preserving settings. Participant edge devices in FL systems typically contain non-independent and identically distributed~(Non-IID) private data and unevenly distributed computational resources. Preserving user data privacy while optimizing AI/ML models in a heterogeneous federated network requires us to address data heterogeneity and system/resource heterogeneity. Hence, we propose \underline{R}esource-\underline{a}ware \underline{F}ederated \underline{L}earning~(RaFL) to address these challenges. RaFL allocates resource-aware models to edge devices using Neural Architecture Search~(NAS) and allows heterogeneous model architecture deployment by knowledge extraction and fusion. Integrating NAS into FL enables on-demand customized model deployment for resource-diverse edge devices. Furthermore, we propose a multi-model architecture fusion scheme allowing the aggregation of the distributed learning results. Results demonstrate RaFL's superior resource efficiency compared to SoTA.
translated by 谷歌翻译
边缘用户的计算和通信功能有限,为大型模型的联合学习(FL)创造了重要的瓶颈。我们考虑了一个现实但较少的跨设备FL设置,在该设置中,没有客户能够培训完整的大型模型,也不愿意与服务器共享任何中间激活。为此,我们提出了主要子模型(PRISM)训练方法,该方法利用模拟低级结构和内核正交性来训练在正交内核空间中的子模型。更具体地说,通过将单数值分解(SVD)应用于服务器模型中的原始内核,Prism首先获得了一组主要的正交核,其中每个内核都通过其单数值权衡。此后,Prism利用我们的新型抽样策略,该策略独立选择主要核的不同子集以为客户创建子模型。重要的是,具有较高的采样概率分配具有较大奇异值的内核。因此,每个子模型都是整个大型模型的低级别近似值,所有客户共同实现了接近全模型的训练。我们在各种资源受限设置中对多个数据集进行的广泛评估表明,与现有替代方案相比,PRISM的性能最高可提高10%,只有20%的子模型培训。
translated by 谷歌翻译
联邦学习(FL)是一种在分布在大量可能异构客户端的私人数据上培训机器学习模型的方法,例如移动电话和物联网设备。在这项工作中,我们提出了一个名为Heterofl的新联合学习框架来解决具有较差的计算和通信能力的异构客户端。我们的解决方案可以实现具有不同计算复杂性的异构本地模型,并仍然产生单一的全局推理模型。我们的方法是挑战本地模型必须与全球模型共享相同的架构的现有工作的潜在工作。我们展示了提高流行培训的几种策略,并进行广泛的经验评估,包括三个数据集三个模型架构的五个计算复杂性水平。我们表明,根据客户端的功能,自适应分配子网是计算和通信有效的。
translated by 谷歌翻译
Most cross-device federated learning (FL) studies focus on the model-homogeneous setting where the global server model and local client models are identical. However, such constraint not only excludes low-end clients who would otherwise make unique contributions to model training but also restrains clients from training large models due to on-device resource bottlenecks. In this work, we propose FedRolex, a partial training (PT)-based approach that enables model-heterogeneous FL and can train a global server model larger than the largest client model. At its core, FedRolex employs a rolling sub-model extraction scheme that allows different parts of the global server model to be evenly trained, which mitigates the client drift induced by the inconsistency between individual client models and server model architectures. We show that FedRolex outperforms state-of-the-art PT-based model-heterogeneous FL methods (e.g. Federated Dropout) and reduces the gap between model-heterogeneous and model-homogeneous FL, especially under the large-model large-dataset regime. In addition, we provide theoretical statistical analysis on its advantage over Federated Dropout and evaluate FedRolex on an emulated real-world device distribution to show that FedRolex can enhance the inclusiveness of FL and boost the performance of low-end devices that would otherwise not benefit from FL. Our code is available at https://github.com/MSU-MLSys-Lab/FedRolex.
translated by 谷歌翻译
随着对用户数据隐私的越来越关注,联合学习(FL)已被开发为在边缘设备上训练机器学习模型的独特培训范式,而无需访问敏感数据。传统的FL和现有方法直接在云服务器的同一型号和培训设备的所有边缘上采用聚合方法。尽管这些方法保护了数据隐私,但它们不能具有模型异质性,甚至忽略了异质的计算能力,也可以忽略陡峭的沟通成本。在本文中,我们目的是将资源感知的FL汇总为从边缘模型中提取的本地知识的集合,而不是汇总每个本地模型的权重,然后将其蒸馏成一个强大的全局知识,作为服务器模型通过知识蒸馏。通过深入的相互学习,将本地模型和全球知识提取到很小的知识网络中。这种知识提取使Edge客户端可以部署资源感知模型并执行多模型知识融合,同时保持沟通效率和模型异质性。经验结果表明,在异质数据和模型中的通信成本和概括性能方面,我们的方法比现有的FL算法有了显着改善。我们的方法将VGG-11的沟通成本降低了102美元$ \ times $和Resnet-32,当培训Resnet-20作为知识网络时,最多可达30美元$ \ times $。
translated by 谷歌翻译
高效联合学习是在边缘设备上培训和部署AI模型的关键挑战之一。然而,在联合学习中维护数据隐私提出了几种挑战,包括数据异质性,昂贵的通信成本和有限的资源。在本文中,我们通过(a)通过基于本地客户端的深度增强学习引入突出参数选择代理的上述问题,并在中央服务器上聚合所选择的突出参数,(b)分割正常的深度学习模型〜 (例如,CNNS)作为共享编码器和本地预测器,并通过联合学习训练共享编码器,同时通过本地自定义预测器将其知识传送到非IID客户端。所提出的方法(a)显着降低了联合学习的通信开销,并加速了模型推断,而方法(b)则在联合学习中解决数据异质性问题。此外,我们利用梯度控制机制来校正客户之间的梯度异质性。这使得训练过程更稳定并更快地收敛。实验表明,我们的方法产生了稳定的训练过程,并与最先进的方法相比实现了显着的结果。在培训VGG-11时,我们的方法明显降低了通信成本最高108 GB,并在培训Reset-20时需要7.6美元的通信开销,同时通过减少高达39.7 \%$ 39.7 \%$ vgg- 11.
translated by 谷歌翻译
由于参与客户的异构特征,联邦学习往往受到不稳定和缓慢的收敛。当客户参与比率低时,这种趋势加剧了,因为从每个轮的客户收集的信息容易更加不一致。为了解决挑战,我们提出了一种新的联合学习框架,这提高了服务器端聚合步骤的稳定性,这是通过将客户端发送与全局梯度估计的加速模型来引导本地梯度更新来实现的。我们的算法自然地聚合并将全局更新信息与没有额外的通信成本的参与者传达,并且不需要将过去的模型存储在客户端中。我们还规范了本地更新,以进一步降低偏差并提高本地更新的稳定性。我们根据各种设置执行了关于实际数据的全面实证研究,与最先进的方法相比,在准确性和通信效率方面表现出了拟议方法的显着性能,特别是具有低客户参与率。我们的代码可在https://github.com/ninigapa0 / fedagm获得
translated by 谷歌翻译
作为一种有希望的隐私机器学习方法,联合学习(FL)可以使客户跨客户培训,而不会损害其机密的本地数据。但是,现有的FL方法遇到了不均分布数据的推理性能低的问题,因为它们中的大多数依赖于联合平均(FIDAVG)基于联合的聚合。通过以粗略的方式平均模型参数,FedAvg将局部模型的个体特征黯然失色,这极大地限制了FL的推理能力。更糟糕的是,在每一轮FL培训中,FedAvg向客户端向客户派遣了相同的初始本地模型,这很容易导致对最佳全局模型的局限性搜索。为了解决上述问题,本文提出了一种新颖有效的FL范式,名为FEDMR(联合模型重组)。与传统的基于FedAvg的方法不同,FEDMR的云服务器将收集到的本地型号的每一层层混合,并重组它们以实现新的模型,以供客户端培训。由于在每场FL比赛中进行了细粒度的模型重组和本地培训,FEDMR可以迅速为所有客户找出一个全球最佳模型。全面的实验结果表明,与最先进的FL方法相比,FEDMR可以显着提高推理准确性而不会引起额外的通信开销。
translated by 谷歌翻译
联合学习的一个关键挑战是客户之间的数据异质性和失衡,这导致本地网络与全球模型不稳定的融合之间的不一致。为了减轻局限性,我们提出了一种新颖的建筑正则化技术,该技术通过在几个不同级别上接管本地和全球子网,在每个本地模型中构建多个辅助分支通过在线知识蒸馏。该提出的技术即使在非IID环境中也可以有效地鲁棒化,并且适用于各种联合学习框架,而不会产生额外的沟通成本。与现有方法相比,我们进行了全面的经验研究,并在准确性和效率方面表现出显着的性能提高。源代码可在我们的项目页面上找到。
translated by 谷歌翻译
The heterogeneity of hardware and data is a well-known and studied problem in the community of Federated Learning (FL) as running under heterogeneous settings. Recently, custom-size client models trained with Knowledge Distillation (KD) has emerged as a viable strategy for tackling the heterogeneity challenge. However, previous efforts in this direction are aimed at client model tuning rather than their impact onto the knowledge aggregation of the global model. Despite performance of global models being the primary objective of FL systems, under heterogeneous settings client models have received more attention. Here, we provide more insights into how the chosen approach for training custom client models has an impact on the global model, which is essential for any FL application. We show the global model can fully leverage the strength of KD with heterogeneous data. Driven by empirical observations, we further propose a new approach that combines KD and Learning without Forgetting (LwoF) to produce improved personalised models. We bring heterogeneous FL on pair with the mighty FedAvg of homogeneous FL, in realistic deployment scenarios with dropping clients.
translated by 谷歌翻译
近年来,个性化联邦学习(PFL)引起了越来越关注其在客户之间处理统计异质性的潜力。然而,最先进的PFL方法依赖于服务器端的模型参数聚合,这需要所有模型具有相同的结构和大小,因此限制了应用程序以实现更多异构场景。要处理此类模型限制,我们利用异构模型设置的潜力,并提出了一种新颖的培训框架,为不同客户使用个性化模型。具体而言,我们将原始PFL中的聚合过程分为个性化组知识转移训练算法,即KT-PFL,这使得每个客户端能够在服务器端维护个性化软预测以指导其他人的本地培训。 KT-PFL通过使用知识系数矩阵的所有本地软预测的线性组合更新每个客户端的个性化软预测,这可以自适应地加强拥有类似数据分布的客户端之间的协作。此外,为了量化每个客户对他人的个性化培训的贡献,知识系数矩阵是参数化的,以便可以与模型同时培训。知识系数矩阵和模型参数在每轮梯度下降方式之后的每一轮中可替代地更新。在不同的设置(异构模型和数据分布)下进行各种数据集(EMNIST,Fashion \ _Mnist,CIFAR-10)的广泛实验。据证明,所提出的框架是第一个通过参数化群体知识转移实现个性化模型培训的联邦学习范例,同时实现与最先进的算法比较的显着性能增益。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译
联合学习(FL)是以隐私性的方式从分散数据培训全球模型的重要范例。现有的FL方法通常假定可以对任何参与客户端进行培训。但是,在实际应用中,客户的设备通常是异质的,并且具有不同的计算能力。尽管像伯特这样的大型模型在AI中取得了巨大的成功,但很难将它们应用于弱客户的异质FL。直接的解决方案(例如删除弱客户端或使用小型模型适合所有客户端)将带来一些问题,例如由于数据丢失或有限的模型表示能力而导致的掉落客户端的代表性不足和劣等精度。在这项工作中,我们提出了一种包含客户的联合学习方法,以解决此问题。包容性FL的核心思想是将不同尺寸的模型分配给具有不同计算功能的客户,为功能强大的客户提供的较大模型以及针对弱客户的较小客户。我们还提出了一种有效的方法,可以在多个具有不同大小的本地模型之间共享知识。这样,所有客户都可以参与FL中的模型学习,最终模型可以足够大。此外,我们提出了一种动量知识蒸馏方法,以更好地转移强大客户的大型模型中的知识,向弱客户的小型模型。在许多实际基准数据集上进行的广泛实验证明了该方法在FL框架下使用异质设备的客户学习准确模型的有效性。
translated by 谷歌翻译
当可用的硬件无法满足内存和计算要求以有效地训练高性能的机器学习模型时,需要妥协训练质量或模型复杂性。在联合学习(FL)中,节点是比传统服务器级硬件更具限制的数量级,并且通常是电池供电的,严重限制了可以在此范式下训练的模型的复杂性。尽管大多数研究都集中在设计更好的聚合策略上以提高收敛速度并减轻FL的沟通成本,但更少的努力致力于加快设备培训。这样的阶段重复数百次(即每回合)并可能涉及数千个设备,这是培训联合模型所需的大部分时间,以及客户端的全部能源消耗。在这项工作中,我们介绍了第一个研究在FL工作负载中培训时间引入稀疏性时出现的独特方面的研究。然后,我们提出了Zerofl,该框架依赖于高度稀疏的操作来加快设备训练。与通过将最先进的稀疏训练框架适应FL设置相比,接受Zerofl和95%稀疏性训练的模型高达2.3%的精度。
translated by 谷歌翻译
在存在数据掠夺性保存问题的情况下,有效地在许多设备和资源限制上(尤其是在边缘设备上)的有效部署深度神经网络是最具挑战性的问题之一。传统方法已经演变为改善单个全球模型,同时保持每个本地培训数据分散(即数据杂质性),或者培训一个曾经是一个曾经是一个曾经是的网络,该网络支持多样化的建筑设置,以解决配备不同计算功能的异质系统(即模型杂种)。但是,很少的研究同时考虑了这两个方向。在这项工作中,我们提出了一个新颖的框架来考虑两种情况,即超级网训练联合会(FEDSUP),客户在该场景中发送和接收一条超级网,其中包含从本身中采样的所有可能的体系结构。它的灵感来自联邦学习模型聚合阶段(FL)中平均参数的启发,类似于超级网训练中的体重分享。具体而言,在FedSup框架中,训练单射击模型中广泛使用的重量分享方法与联邦学习的平均(FedAvg)结合在一起。在我们的框架下,我们通过将子模型发送给广播阶段的客户来降低沟通成本和培训间接费用,提出有效的算法(电子馈SUP)。我们展示了几种增强FL环境中超网训练的策略,并进行广泛的经验评估。结果框架被证明为在几个标准基准上的数据和模型杂质性的鲁棒性铺平了道路。
translated by 谷歌翻译
大规模的神经网络具有相当大的表现力。它们非常适合工业应用中的复杂学习任务。但是,在当前联邦学习(FL)范式下,大型模型对训练构成了重大挑战。现有的有效FL训练的方法通常利用模型参数辍学。但是,操纵单个模型参数不仅在训练大规模FL模型时有意义地减少通信开销效率低下,而且还可能不利于缩放工作和模型性能,如最近的研究所示。为了解决这些问题,我们提出了联合的机会障碍辍学方法(FEDOBD)方法。关键的新颖性是,它将大规模模型分解为语义块,以便FL参与者可以机会上传量化的块,这些块被认为对训练该模型非常重要,以供FL服务器进行聚合。基于多个现实世界数据集的五种最先进方法评估FEDOBD的广泛实验表明,与最佳性能基线方法相比,它将整体通信开销降低了70%以上,同时达到了最高的测试准确性。据我们所知,FEDOBD是在块级别而不是在单个参数级别上执行FL模型上辍学的第一种方法。
translated by 谷歌翻译
在实用的联合学习方案中,参与的设备可能具有不同的位宽,用于按设计进行计算和内存存储。然而,尽管设备异构联合学习方案取得了进展,但硬件中位于位的比值的异质性大多被忽略了。我们介绍了一种务实的FL场景,在参与设备中具有位于刻度的异质性,被称为Bitwidth异质联邦学习(BHFL)。 BHFL提出了一个新的挑战,即具有不同位宽度的模型参数的聚合可能会导致严重的性能变性,尤其是对于高含宽模型。为了解决这个问题,我们提出了ProWD框架,该框架在中央服务器上具有可训练的权重去除剂,该框架逐渐将低位宽度的重量重建为更高的位宽度重量,最后将其重建为完整的重量。 PROWD进一步选择性地汇总了模型参数,以最大程度地提高跨比异质权重的兼容性。我们使用具有不同位低的客户端在基准数据集上的相关FL基准验证了Prowd。我们的prowd在很大程度上优于基线FL算法以及在拟议的BHFL方案下的天真方法(例如,平均分组)。
translated by 谷歌翻译
The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data. However, the existing works fail to address all these practical concerns in FL: limited communication resources, dynamic network conditions and heterogeneous client properties, which slow down the convergence of FL. To tackle the above challenges, we propose a heterogeneity-aware FL framework, called FedCG, with adaptive client selection and gradient compression. Specifically, the parameter server (PS) selects a representative client subset considering statistical heterogeneity and sends the global model to them. After local training, these selected clients upload compressed model updates matching their capabilities to the PS for aggregation, which significantly alleviates the communication load and mitigates the straggler effect. We theoretically analyze the impact of both client selection and gradient compression on convergence performance. Guided by the derived convergence rate, we develop an iteration-based algorithm to jointly optimize client selection and compression ratio decision using submodular maximization and linear programming. Extensive experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$\times$ speedup compared to other methods.
translated by 谷歌翻译