零击学习是一种学习制度,通过概括从可见类中学到的视觉语义关系来识别看不见的课程。为了获得有效的ZSL模型,可以诉诸于来自多个来源的培训样本,这可能不可避免地提高了有关不同组织之间数据共享的隐私问题。在本文中,我们提出了一个新颖的联合零摄影学习FedZSL框架,该框架从位于边缘设备上的分散数据中学习了一个中心模型。为了更好地概括为以前看不见的类,FEDZSL允许从非重叠类采样的每个设备上的训练数据,这些数据远非I.I.D.传统的联邦学习通常假设。我们在FEDZSL协议中确定了两个关键挑战:1)受过训练的模型容易偏向于本地观察到的类,因此未能推广到其他设备上的看不见的类和/或所见类别; 2)由于培训数据中的每个类别都来自单个来源,因此中心模型非常容易受到模型置换(后门)攻击的影响。为了解决这些问题,我们提出了三个局部目标,以通过关系蒸馏来进行视觉声音对齐和跨设备对齐,这利用了归一化的类协方差,以使跨设备的预测逻辑的一致性正常。为了防止后门攻击,提出了一种功能级防御技术。由于恶意样本与给定的语义属性的相关性较小,因此将丢弃低大小的视觉特征以稳定模型更新。 FedZSL的有效性和鲁棒性通过在三个零击基准数据集上进行的广泛实验证明。
translated by 谷歌翻译
由于联邦学习(FL)的分布性质,研究人员发现FL容易受到后门攻击的影响,该攻击旨在将子任务注入FL而不破坏主要任务的性能。当在FL模型收敛上注入时,单发后门攻击在主要任务和后门子任务上都可以达到高度精度。但是,早期注射的单发后门攻击是无效的,因为:(1)由于正常局部更新的稀释效果,在注射时未达到最大的后门效果; (2)后门效应迅速下降,因为后门将被新的普通本地更新所覆盖。在本文中,我们利用FL模型信息泄漏加强了早期注射的单发后门攻击。我们表明,如果客户在模拟整个人群的分布和梯度的数据集上进行训练,则可以加快FL收敛速度。基于这一观察结果,我们提出了两阶段的后门攻击,其中包括随后的后门攻击的初步阶段。在初步阶段,受攻击者控制的客户首先启动了整个人口分布推理攻击,然后在本地制作的数据集上进行训练,该数据集与梯度和推断分布保持一致。从初步阶段中受益,后来注射的后门实现了更好的有效性,因为后门效应不太可能被普通模型更新稀释。在各种数据异质性设置下,在MNIST数据集上进行了广泛的实验,以评估拟议的后门攻击的有效性。结果表明,即使有防御机制,该提议的后门以成功率和寿命都优于现有的后门攻击。
translated by 谷歌翻译
当由于数据隐私或传输限制而无法共享来自不同来源的数据时,常规的集中式深度学习范例是不可行的。为了解决这个问题,已经引入了联合学习,以通过非共享数据跨多个来源(客户)转移知识,同时优化了全球概括的中央模型(服务器)。现有的联合学习范式主要集中于在模型中转移整体高级知识(例如类),这些知识与感兴趣的特定对象密切相关,因此可能会遭受反向攻击。相比之下,在这项工作中,我们考虑转移对感兴趣的特定对象不敏感的中级语义知识(例如属性),因此更具有隐私性和可扩展性。为此,我们制定了一个新的联合零局学习(FZSL)范式,以通过非共享本地数据学习中级语义知识,并累积了全球概括的部署中心模型。为了提高模型判别能力,我们建议探索从外部知识中探索语义知识的增强,以丰富FZSL中的中级语义空间。对五个Zeroshot学习基准数据集进行的广泛实验验证了我们通过中级语义知识转移优化可通用联合学习模型的方法的有效性。
translated by 谷歌翻译
Federated Learning has emerged to cope with raising concerns about privacy breaches in using Machine or Deep Learning models. This new paradigm allows the leverage of deep learning models in a distributed manner, enhancing privacy preservation. However, the server's blindness to local datasets introduces its vulnerability to model poisoning attacks and data heterogeneity, tampering with the global model performance. Numerous works have proposed robust aggregation algorithms and defensive mechanisms, but the approaches are orthogonal to individual attacks or issues. FedCC, the proposed method, provides robust aggregation by comparing the Centered Kernel Alignment of Penultimate Layers Representations. The experiment results on FedCC demonstrate that it mitigates untargeted and targeted model poisoning or backdoor attacks while also being effective in non-Independently and Identically Distributed data environments. By applying FedCC against untargeted attacks, global model accuracy is recovered the most. Against targeted backdoor attacks, FedCC nullified attack confidence while preserving the test accuracy. Most of the experiment results outstand the baseline methods.
translated by 谷歌翻译
更广泛的覆盖范围和更好的解决方案延迟减少5G需要其与多访问边缘计算(MEC)技术的组合。分散的深度学习(DDL),如联邦学习和群体学习作为对数百万智能边缘设备的隐私保留数据处理的有希望的解决方案,利用了本地客户端网络内的多层神经网络的分布式计算,而无需披露原始本地培训数据。值得注意的是,在金融和医疗保健等行业中,谨慎维护交易和个人医疗记录的敏感数据,DDL可以促进这些研究所的合作,以改善培训模型的性能,同时保护参与客户的数据隐私。在本调查论文中,我们展示了DDL的技术基础,通过分散的学习使社会许多人走。此外,我们通过概述DDL的挑战以及从新颖的沟通效率和可靠性的观点来概述目前本领域最先进的全面概述。
translated by 谷歌翻译
Federated learning achieves joint training of deep models by connecting decentralized data sources, which can significantly mitigate the risk of privacy leakage. However, in a more general case, the distributions of labels among clients are different, called ``label distribution skew''. Directly applying conventional federated learning without consideration of label distribution skew issue significantly hurts the performance of the global model. To this end, we propose a novel federated learning method, named FedMGD, to alleviate the performance degradation caused by the label distribution skew issue. It introduces a global Generative Adversarial Network to model the global data distribution without access to local datasets, so the global model can be trained using the global information of data distribution without privacy leakage. The experimental results demonstrate that our proposed method significantly outperforms the state-of-the-art on several public benchmarks. Code is available at \url{https://github.com/Sheng-T/FedMGD}.
translated by 谷歌翻译
联合学习允许多个参与者在不公开数据隐私的情况下协作培训高效模型。但是,这种分布式的机器学习培训方法容易受到拜占庭客户的攻击,拜占庭客户通过修改模型或上传假梯度来干扰全球模型的训练。在本文中,我们提出了一种基于联邦学习(CMFL)的新型无服务器联合学习框架委员会机制,该机制可以确保算法具有融合保证的鲁棒性。在CMFL中,设立了一个委员会系统,以筛选上载已上传的本地梯度。 The committee system selects the local gradients rated by the elected members for the aggregation procedure through the selection strategy, and replaces the committee member through the election strategy.基于模型性能和防御的不同考虑,设计了两种相反的选择策略是为了精确和鲁棒性。广泛的实验表明,与典型的联邦学习相比,与传统的稳健性相比,CMFL的融合和更高的准确性比传统的稳健性,以分散的方法的方式获得了传统的耐受性算法。此外,我们理论上分析并证明了在不同的选举和选择策略下CMFL的收敛性,这与实验结果一致。
translated by 谷歌翻译
联合学习(FL)是一项广泛采用的分布式学习范例,在实践中,打算在利用所有参与者的整个数据集进行培训的同时保护用户的数据隐私。在FL中,多种型号在用户身上独立培训,集中聚合以在迭代过程中更新全局模型。虽然这种方法在保护隐私方面是优异的,但FL仍然遭受攻击或拜占庭故障等质量问题。最近的一些尝试已经解决了对FL的强大聚集技术的这种质量挑战。然而,最先进的(SOTA)强大的技术的有效性尚不清楚并缺乏全面的研究。因此,为了更好地了解这些SOTA流域的当前质量状态和挑战在存在攻击和故障的情况下,我们进行了大规模的实证研究,以研究SOTA FL的质量,从多个攻击角度,模拟故障(通过突变运算符)和聚合(防御)方法。特别是,我们对两个通用图像数据集和一个现实世界联邦医学图像数据集进行了研究。我们还系统地调查了攻击用户和独立和相同分布的(IID)因子,每个数据集的攻击/故障的分布对鲁棒性结果的影响。经过496个配置进行大规模分析后,我们发现每个用户的大多数突变者对最终模型具有可忽略不计的影响。此外,选择最强大的FL聚合器取决于攻击和数据集。最后,我们说明了可以实现几乎在所有攻击和配置上的任何单个聚合器以及具有简单集合模型的所有攻击和配置的常用解决方案的通用解决方案。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
对网络攻击的现代防御越来越依赖于主动的方法,例如,基于过去的事件来预测对手的下一个行动。建立准确的预测模型需要许多组织的知识; las,这需要披露敏感信息,例如网络结构,安全姿势和政策,这些信息通常是不受欢迎的或完全不可能的。在本文中,我们探讨了使用联合学习(FL)预测未来安全事件的可行性。为此,我们介绍了Cerberus,这是一个系统,可以为参与组织的复发神经网络(RNN)模型进行协作培训。直觉是,FL可能会在非私有方法之间提供中间地面,在非私有方法中,训练数据在中央服务器上合并,而仅训练本地模型的较低性替代方案。我们将Cerberus实例化在从一家大型安全公司的入侵预防产品中获得的数据集上,并评估其有关实用程序,鲁棒性和隐私性,以及参与者如何从系统中贡献和受益。总体而言,我们的工作阐明了将FL执行此任务的积极方面和挑战,并为部署联合方法以进行预测安全铺平了道路。
translated by 谷歌翻译
Federated learning enables thousands of participants to construct a deep learning model without sharing their private training data with each other. For example, multiple smartphones can jointly train a next-word predictor for keyboards without revealing what individual users type.Federated models are created by aggregating model updates submitted by participants. To protect confidentiality of the training data, the aggregator by design has no visibility into how these updates are generated. We show that this makes federated learning vulnerable to a model-poisoning attack that is significantly more powerful than poisoning attacks that target only the training data.A malicious participant can use model replacement to introduce backdoor functionality into the joint model, e.g., modify an image classifier so that it assigns an attacker-chosen label to images with certain features, or force a word predictor to complete certain sentences with an attacker-chosen word. These attacks can be performed by a single participant or multiple colluding participants. We evaluate model replacement under different assumptions for the standard federated-learning tasks and show that it greatly outperforms training-data poisoning.Federated learning employs secure aggregation to protect confidentiality of participants' local models and thus cannot prevent our attack by detecting anomalies in participants' contributions to the joint model. To demonstrate that anomaly detection would not have been effective in any case, we also develop and evaluate a generic constrain-and-scale technique that incorporates the evasion of defenses into the attacker's loss function during training. ! "#$%" train & % '() * '()! +%$,-##.
translated by 谷歌翻译
In federated learning, a strong global model is collaboratively learned by aggregating clients' locally trained models. Although this precludes the need to access clients' data directly, the global model's convergence often suffers from data heterogeneity. This study starts from an analogy to continual learning and suggests that forgetting could be the bottleneck of federated learning. We observe that the global model forgets the knowledge from previous rounds, and the local training induces forgetting the knowledge outside of the local distribution. Based on our findings, we hypothesize that tackling down forgetting will relieve the data heterogeneity problem. To this end, we propose a novel and effective algorithm, Federated Not-True Distillation (FedNTD), which preserves the global perspective on locally available data only for the not-true classes. In the experiments, FedNTD shows state-of-the-art performance on various setups without compromising data privacy or incurring additional communication costs.
translated by 谷歌翻译
由于隐私立法赋予用户有权被遗忘的权利,因此使模型忘记其某些培训数据已经成为必不可少的。我们探讨了删除任何客户在联邦学习(FL)中的贡献的问题。在FL回合中,每个客户都进行本地培训,以学习一个模型,以最大程度地减少其私人数据的经验损失。我们建议通过逆转学习过程,即训练模型\ emph {最大化}局部经验损失来对客户(将要删除)进行学习。 In particular, we formulate the unlearning problem as a constrained maximization problem by restricting to an $\ell_2$-norm ball around a suitably chosen reference model to help retain some knowledge learnt from the other clients' data.这使客户可以使用投影的梯度下降来执行学习。该方法确实不需要全局访问用于培训的数据,也不需要由聚合器(服务器)或任何客户端存​​储的参数更新历史记录。 MNIST数据集的实验表明,所提出的未学习方法是有效的。
translated by 谷歌翻译
图神经网络(GNN)是一类用于处理图形域信息的基于深度学习的方法。 GNN最近已成为一种广泛使用的图形分析方法,因为它们可以为复杂的图形数据学习表示形式。但是,由于隐私问题和法规限制,集中的GNN可能很难应用于数据敏感的情况。 Federated学习(FL)是一种新兴技术,为保护隐私设置而开发,当几个方需要协作培训共享的全球模型时。尽管几项研究工作已应用于培训GNN(联邦GNN),但对他们对后门攻击的稳健性没有研究。本文通过在联邦GNN中进行两种类型的后门攻击来弥合这一差距:集中式后门攻击(CBA)和分发后门攻击(DBA)。我们的实验表明,在几乎所有评估的情况下,DBA攻击成功率高于CBA。对于CBA,即使对抗方的训练集嵌入了全球触发因素,所有本地触发器的攻击成功率也类似于全球触发因素。为了进一步探索联邦GNN中两次后门攻击的属性,我们评估了不同数量的客户,触发尺寸,中毒强度和触发密度的攻击性能。此外,我们探讨了DBA和CBA对两个最先进的防御能力的鲁棒性。我们发现,两次攻击都对被调查的防御能力进行了强大的强大,因此需要考虑将联邦GNN中的后门攻击视为需要定制防御的新威胁。
translated by 谷歌翻译
联合学习(FL)是分散机器学习的新型框架。由于FL的分散特征,它很容易受到训练程序中的对抗攻击的影响,例如,后门攻击。后门攻击旨在将后门注入机器学习模型中,以便该模型会在测试样本上任意使用一些特定的后门触发器。即使已经引入了一系列FL的后门攻击方法,但也有针对它们进行防御的方法。许多捍卫方法都利用了带有后门的模型的异常特征,或带有后门和常规模型的模型之间的差异。为了绕过这些防御,我们需要减少差异和异常特征。我们发现这种异常的来源是,后门攻击将在中毒数据时直接翻转数据标签。但是,当前对FL后门攻击的研究并不主要集中在减少带有后门和常规模型的模型之间的差异。在本文中,我们提出了对抗性知识蒸馏(ADVKD),一种方法将知识蒸馏与FL中的后门攻击结合在一起。通过知识蒸馏,我们可以减少标签翻转导致模型中的异常特征,因此该模型可以绕过防御措施。与当前方法相比,我们表明ADVKD不仅可以达到更高的攻击成功率,而且还可以在其他方法失败时成功绕过防御。为了进一步探索ADVKD的性能,我们测试参数如何影响不同情况下的ADVKD的性能。根据实验结果,我们总结了如何在不同情况下调整参数以获得更好的性能。我们还使用多种方法可视化不同攻击的效果并解释Advkd的有效性。
translated by 谷歌翻译
联邦学习的出现在维持隐私的同时,促进了机器学习模型之间的大规模数据交换。尽管历史悠久,但联邦学习正在迅速发展,以使更广泛的使用更加实用。该领域中最重要的进步之一是将转移学习纳入联邦学习,这克服了主要联合学习的基本限制,尤其是在安全方面。本章从安全的角度进行了有关联合和转移学习的交集的全面调查。这项研究的主要目标是发现可能损害使用联合和转移学习的系统的隐私和性能的潜在脆弱性和防御机制。
translated by 谷歌翻译
联合学习(FL)是一种分布式机器学习方法,其中多个客户在不交换数据的情况下协作培训联合模型。尽管FL在数据隐私保护方面取得了前所未有的成功,但其对自由骑手攻击的脆弱性吸引了人们越来越多的关注。现有的防御能力可能对高度伪装或高百分比的自由骑手无效。为了应对这些挑战,我们从新颖的角度重新考虑防御,即模型重量不断发展的频率。从经验上讲,我们获得了一种新颖的见解,即在FL的训练中,模型权重的频率不断发展,自由骑机的频率和良性客户的频率显着不同的。受到这种见解的启发,我们提出了一种基于模型权重演化频率的新型防御方法,称为WEF-DEFENSE。特别是,我们在本地训练期间首先收集重量演变的频率(定义为WEF-MATRIX)。对于每个客户端,它将本地型号的WEF-Matrix与每个迭代的模型重量一起上传到服务器。然后,服务器根据WEF-Matrix的差异将自由骑士与良性客户端分开。最后,服务器使用个性化方法为相应的客户提供不同的全局模型。在五个数据集和五个模型上进行的全面实验表明,与最先进的基线相比,WEF防御能力更好。
translated by 谷歌翻译
联合学习的一个关键挑战是客户之间的数据异质性和失衡,这导致本地网络与全球模型不稳定的融合之间的不一致。为了减轻局限性,我们提出了一种新颖的建筑正则化技术,该技术通过在几个不同级别上接管本地和全球子网,在每个本地模型中构建多个辅助分支通过在线知识蒸馏。该提出的技术即使在非IID环境中也可以有效地鲁棒化,并且适用于各种联合学习框架,而不会产生额外的沟通成本。与现有方法相比,我们进行了全面的经验研究,并在准确性和效率方面表现出显着的性能提高。源代码可在我们的项目页面上找到。
translated by 谷歌翻译
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To jointly overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small clean server-collected proxy dataset (e.g., around one hundred samples, 0.2% of the dataset) via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both federated learning with non-IID data distribution and federated learning with malicious clients. The source code will be released.
translated by 谷歌翻译
联邦学习(FL)的稳健性对于分布式培训的准确全球模型的分布式培训至关重要。通过典型聚合模型更新的协作学习框架容易受到来自对抗客户的中毒攻击。由于全局服务器和参与者之间的共享信息仅限于模型参数,因此检测错误的模型更新是挑战性的。此外,现实世界数据集通常在参与者中异质且不独立,并且不独立,并且在非IID中分布(非IID),这使得这种稳健的流水线更加困难。在这项工作中,我们提出了一种新颖的鲁棒聚集方法,联邦鲁棒自适应蒸馏(Fedrad),以检测基于中值统计的属性的对手和鲁棒地聚合本地模型,然后执行适应的集合知识蒸馏。我们运行广泛的实验,以评估拟议的方法对最近公布的作品。结果表明,FEDRAD在存在对手的情况下表现出所有其他聚合器,以及异构数据分布。
translated by 谷歌翻译